import os import getpass import spacy import pandas as pd from typing import Optional, List, Dict, Any import subprocess from langchain.llms.base import LLM from langchain.docstore.document import Document from langchain.embeddings import HuggingFaceEmbeddings from langchain.vectorstores import FAISS from langchain.chains import RetrievalQA from smolagents import CodeAgent, DuckDuckGoSearchTool, ManagedAgent, LiteLLMModel from pydantic import BaseModel, Field, ValidationError, validator from mistralai import Mistral from langchain.prompts import PromptTemplate # Import chains and tools from classification_chain import get_classification_chain from cleaner_chain import get_cleaner_chain from refusal_chain import get_refusal_chain from tailor_chain import get_tailor_chain from prompts import classification_prompt, refusal_prompt, tailor_prompt # Initialize Mistral API client mistral_api_key = os.environ.get("MISTRAL_API_KEY") client = Mistral(api_key=mistral_api_key) # Initialize LiteLLM model for web search pydantic_agent = LiteLLMModel(model_id="gemini/gemini-pro", api_key=os.environ.get("GEMINI_API_KEY")) # Pydantic models for validation and type safety class QueryInput(BaseModel): query: str = Field(..., min_length=1, description="The input query string") @validator('query') def check_query_is_string(cls, v): if not isinstance(v, str): raise ValueError("Query must be a valid string") if v.strip() == "": raise ValueError("Query cannot be empty or just whitespace") return v.strip() class ModerationResult(BaseModel): is_safe: bool = Field(..., description="Whether the content is safe") categories: Dict[str, bool] = Field(default_factory=dict, description="Detected content categories") original_text: str = Field(..., description="The original input text") # Load spaCy model for NER def install_spacy_model(): try: spacy.load("en_core_web_sm") print("spaCy model 'en_core_web_sm' is already installed.") except OSError: print("Downloading spaCy model 'en_core_web_sm'...") subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"], check=True) print("spaCy model 'en_core_web_sm' downloaded successfully.") install_spacy_model() nlp = spacy.load("en_core_web_sm") def extract_main_topic(query: str) -> str: try: query_input = QueryInput(query=query) doc = nlp(query_input.query) main_topic = None for ent in doc.ents: if ent.label_ in ["ORG", "PRODUCT", "PERSON", "GPE", "TIME"]: main_topic = ent.text break if not main_topic: for token in doc: if token.pos_ in ["NOUN", "PROPN"]: main_topic = token.text break return main_topic if main_topic else "this topic" except Exception as e: print(f"Error extracting main topic: {e}") return "this topic" def moderate_text(query: str) -> ModerationResult: try: query_input = QueryInput(query=query) response = client.classifiers.moderate_chat( model="mistral-moderation-latest", inputs=[{"role": "user", "content": query_input.query}] ) is_safe = True categories = {} if hasattr(response, 'results') and response.results: categories = { "violence": response.results[0].categories.get("violence_and_threats", False), "hate": response.results[0].categories.get("hate_and_discrimination", False), "dangerous": response.results[0].categories.get("dangerous_and_criminal_content", False), "selfharm": response.results[0].categories.get("selfharm", False) } is_safe = not any(categories.values()) return ModerationResult( is_safe=is_safe, categories=categories, original_text=query_input.query ) except ValidationError as e: raise ValueError(f"Input validation failed: {str(e)}") except Exception as e: raise RuntimeError(f"Moderation failed: {str(e)}") def classify_query(query: str) -> str: try: query_input = QueryInput(query=query) wellness_keywords = ["box breathing", "meditation", "yoga", "mindfulness", "breathing exercises"] if any(keyword in query_input.query.lower() for keyword in wellness_keywords): return "Wellness" class_result = classification_chain.invoke({"query": query_input.query}) classification = class_result.get("text", "").strip() return classification if classification != "" else "OutOfScope" except ValidationError as e: raise ValueError(f"Classification input validation failed: {str(e)}") except Exception as e: raise RuntimeError(f"Classification failed: {str(e)}") def build_or_load_vectorstore(csv_path: str, store_dir: str) -> FAISS: try: if os.path.exists(store_dir): print(f"DEBUG: Found existing FAISS store at '{store_dir}'. Loading...") embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/multi-qa-mpnet-base-dot-v1") vectorstore = FAISS.load_local(store_dir, embeddings) return vectorstore else: print(f"DEBUG: Building new store from CSV: {csv_path}") df = pd.read_csv(csv_path) df = df.loc[:, ~df.columns.str.contains('^Unnamed')] df.columns = df.columns.str.strip() if "Answer" in df.columns: df.rename(columns={"Answer": "Answers"}, inplace=True) if "Question" not in df.columns and "Question " in df.columns: df.rename(columns={"Question ": "Question"}, inplace=True) if "Question" not in df.columns or "Answers" not in df.columns: raise ValueError("CSV must have 'Question' and 'Answers' columns.") docs = [] for _, row in df.iterrows(): q = str(row["Question"]) ans = str(row["Answers"]) doc = Document(page_content=ans, metadata={"question": q}) docs.append(doc) embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/multi-qa-mpnet-base-dot-v1") vectorstore = FAISS.from_documents(docs, embedding=embeddings) vectorstore.save_local(store_dir) return vectorstore except Exception as e: raise RuntimeError(f"Error building/loading vector store: {str(e)}") def build_rag_chain(llm_model: LiteLLMModel, vectorstore: FAISS) -> RetrievalQA: class GeminiLangChainLLM(LLM): def _call(self, prompt: str, stop: Optional[list] = None, **kwargs) -> str: messages = [{"role": "user", "content": prompt}] return llm_model(messages, stop_sequences=stop) @property def _llm_type(self) -> str: return "custom_gemini" try: retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 3}) gemini_as_llm = GeminiLangChainLLM() return RetrievalQA.from_chain_type( llm=gemini_as_llm, chain_type="stuff", retriever=retriever, return_source_documents=True ) except Exception as e: raise RuntimeError(f"Error building RAG chain: {str(e)}") def sanitize_message(message: Any) -> str: """Sanitize message input to ensure it's a valid string.""" try: if hasattr(message, 'content'): return str(message.content) if isinstance(message, (list, dict)): return str(message) return str(message) except Exception as e: raise RuntimeError(f"Error in sanitize function: {str(e)}") def run_pipeline(query: str) -> str: try: query = sanitize_message(query) topic=extract_main_topic(query) moderation_result = moderate_text(query) if not moderation_result.is_safe: return "Sorry, this query contains harmful or inappropriate content." classification = classify_query(moderation_result.original_text) if classification == "OutOfScope": refusal_text = refusal_chain.run({"topic": topic}) return tailor_chain.run({"response": refusal_text}).strip() if classification == "Wellness": rag_result = wellness_rag_chain({"query": moderation_result.original_text}) csv_answer = rag_result["result"].strip() web_answer = "" if csv_answer else do_web_search(moderation_result.original_text) final_merged = merge_responses(csv_answer, web_answer) return tailor_chain.run({"response": final_merged}).strip() if classification == "Brand": rag_result = brand_rag_chain({"query": moderation_result.original_text}) csv_answer = rag_result["result"].strip() final_merged = merge_responses(csv_answer, "") return tailor_chain.run({"response": final_merged}).strip() refusal_text = refusal_chain.run({"topic": topic}) return tailor_chain.run({"response": refusal_text}).strip() except Exception as e: raise RuntimeError(f"Error in run_runpipeline: {str(e)}") # Initialize chains and vectorstores classification_chain = get_classification_chain() refusal_chain = get_refusal_chain() tailor_chain = get_tailor_chain() cleaner_chain = get_cleaner_chain() wellness_csv = "AIChatbot.csv" brand_csv = "BrandAI.csv" wellness_store_dir = "faiss_wellness_store" brand_store_dir = "faiss_brand_store" wellness_vectorstore = build_or_load_vectorstore(wellness_csv, wellness_store_dir) brand_vectorstore = build_or_load_vectorstore(brand_csv, brand_store_dir) gemini_llm = LiteLLMModel(model_id="gemini/gemini-pro", api_key=os.environ.get("GEMINI_API_KEY")) wellness_rag_chain = build_rag_chain(gemini_llm, wellness_vectorstore) brand_rag_chain = build_rag_chain(gemini_llm, brand_vectorstore) print("Pipeline initialized successfully!") def run_with_chain(query: str) -> str: return run_pipeline(query)