Updated pipeline.py for the history feature
Browse files- pipeline.py +48 -28
pipeline.py
CHANGED
|
@@ -2,7 +2,7 @@
|
|
| 2 |
import os
|
| 3 |
import getpass
|
| 4 |
import pandas as pd
|
| 5 |
-
from typing import Optional
|
| 6 |
|
| 7 |
from langchain.docstore.document import Document
|
| 8 |
from langchain.embeddings import HuggingFaceEmbeddings
|
|
@@ -12,17 +12,17 @@ from langchain.chains import RetrievalQA
|
|
| 12 |
from smolagents import CodeAgent, DuckDuckGoSearchTool, ManagedAgent, LiteLLMModel
|
| 13 |
import litellm
|
| 14 |
|
| 15 |
-
#
|
| 16 |
from classification_chain import get_classification_chain
|
| 17 |
from refusal_chain import get_refusal_chain
|
| 18 |
from tailor_chain import get_tailor_chain
|
| 19 |
-
from cleaner_chain import get_cleaner_chain
|
| 20 |
|
| 21 |
-
#
|
| 22 |
-
|
| 23 |
|
| 24 |
###############################################################################
|
| 25 |
-
# 1) Environment: set up keys
|
| 26 |
###############################################################################
|
| 27 |
if not os.environ.get("GEMINI_API_KEY"):
|
| 28 |
os.environ["GEMINI_API_KEY"] = getpass.getpass("Enter your Gemini API Key: ")
|
|
@@ -30,7 +30,7 @@ if not os.environ.get("GROQ_API_KEY"):
|
|
| 30 |
os.environ["GROQ_API_KEY"] = getpass.getpass("Enter your GROQ API Key: ")
|
| 31 |
|
| 32 |
###############################################################################
|
| 33 |
-
# 2)
|
| 34 |
###############################################################################
|
| 35 |
def build_or_load_vectorstore(csv_path: str, store_dir: str) -> FAISS:
|
| 36 |
if os.path.exists(store_dir):
|
|
@@ -43,18 +43,22 @@ def build_or_load_vectorstore(csv_path: str, store_dir: str) -> FAISS:
|
|
| 43 |
df = pd.read_csv(csv_path)
|
| 44 |
df = df.loc[:, ~df.columns.str.contains('^Unnamed')]
|
| 45 |
df.columns = df.columns.str.strip()
|
|
|
|
| 46 |
if "Answer" in df.columns:
|
| 47 |
df.rename(columns={"Answer": "Answers"}, inplace=True)
|
| 48 |
if "Question" not in df.columns and "Question " in df.columns:
|
| 49 |
df.rename(columns={"Question ": "Question"}, inplace=True)
|
|
|
|
| 50 |
if "Question" not in df.columns or "Answers" not in df.columns:
|
| 51 |
raise ValueError("CSV must have 'Question' and 'Answers' columns.")
|
|
|
|
| 52 |
docs = []
|
| 53 |
for _, row in df.iterrows():
|
| 54 |
q = str(row["Question"])
|
| 55 |
ans = str(row["Answers"])
|
| 56 |
doc = Document(page_content=ans, metadata={"question": q})
|
| 57 |
docs.append(doc)
|
|
|
|
| 58 |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/multi-qa-mpnet-base-dot-v1")
|
| 59 |
vectorstore = FAISS.from_documents(docs, embedding=embeddings)
|
| 60 |
vectorstore.save_local(store_dir)
|
|
@@ -63,15 +67,17 @@ def build_or_load_vectorstore(csv_path: str, store_dir: str) -> FAISS:
|
|
| 63 |
###############################################################################
|
| 64 |
# 3) Build RAG chain for Gemini
|
| 65 |
###############################################################################
|
| 66 |
-
from langchain.llms.base import LLM
|
| 67 |
def build_rag_chain(llm_model: LiteLLMModel, vectorstore: FAISS) -> RetrievalQA:
|
| 68 |
class GeminiLangChainLLM(LLM):
|
| 69 |
def _call(self, prompt: str, stop: Optional[list] = None, **kwargs) -> str:
|
|
|
|
| 70 |
messages = [{"role": "user", "content": prompt}]
|
| 71 |
return llm_model(messages, stop_sequences=stop)
|
|
|
|
| 72 |
@property
|
| 73 |
def _llm_type(self) -> str:
|
| 74 |
return "custom_gemini"
|
|
|
|
| 75 |
retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 3})
|
| 76 |
gemini_as_llm = GeminiLangChainLLM()
|
| 77 |
rag_chain = RetrievalQA.from_chain_type(
|
|
@@ -83,35 +89,29 @@ def build_rag_chain(llm_model: LiteLLMModel, vectorstore: FAISS) -> RetrievalQA:
|
|
| 83 |
return rag_chain
|
| 84 |
|
| 85 |
###############################################################################
|
| 86 |
-
# 4) Initialize
|
| 87 |
###############################################################################
|
| 88 |
-
# Classification chain
|
| 89 |
classification_chain = get_classification_chain()
|
| 90 |
-
# Refusal chain
|
| 91 |
refusal_chain = get_refusal_chain()
|
| 92 |
-
# Tailor chain
|
| 93 |
tailor_chain = get_tailor_chain()
|
| 94 |
-
# Cleaner chain
|
| 95 |
cleaner_chain = get_cleaner_chain()
|
| 96 |
|
| 97 |
###############################################################################
|
| 98 |
-
# 5) Build
|
| 99 |
###############################################################################
|
| 100 |
wellness_csv = "AIChatbot.csv"
|
| 101 |
brand_csv = "BrandAI.csv"
|
| 102 |
wellness_store_dir = "faiss_wellness_store"
|
| 103 |
brand_store_dir = "faiss_brand_store"
|
| 104 |
|
|
|
|
|
|
|
| 105 |
wellness_vectorstore = build_or_load_vectorstore(wellness_csv, wellness_store_dir)
|
| 106 |
brand_vectorstore = build_or_load_vectorstore(brand_csv, brand_store_dir)
|
| 107 |
|
| 108 |
-
gemini_llm = LiteLLMModel(model_id="gemini/gemini-pro", api_key=os.environ.get("GEMINI_API_KEY"))
|
| 109 |
wellness_rag_chain = build_rag_chain(gemini_llm, wellness_vectorstore)
|
| 110 |
brand_rag_chain = build_rag_chain(gemini_llm, brand_vectorstore)
|
| 111 |
|
| 112 |
-
###############################################################################
|
| 113 |
-
# 6) Tools / Agents for web search
|
| 114 |
-
###############################################################################
|
| 115 |
search_tool = DuckDuckGoSearchTool()
|
| 116 |
web_agent = CodeAgent(tools=[search_tool], model=gemini_llm)
|
| 117 |
managed_web_agent = ManagedAgent(agent=web_agent, name="web_search", description="Runs web search for you.")
|
|
@@ -124,24 +124,40 @@ def do_web_search(query: str) -> str:
|
|
| 124 |
return response
|
| 125 |
|
| 126 |
###############################################################################
|
| 127 |
-
#
|
| 128 |
###############################################################################
|
| 129 |
-
def
|
| 130 |
-
|
| 131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
class_result = classification_chain.invoke({"query": query})
|
| 133 |
classification = class_result.get("text", "").strip()
|
| 134 |
print("DEBUG: Classification =>", classification)
|
| 135 |
|
| 136 |
-
# If OutOfScope => refusal => tailor => return
|
| 137 |
if classification == "OutOfScope":
|
| 138 |
refusal_text = refusal_chain.run({})
|
| 139 |
final_refusal = tailor_chain.run({"response": refusal_text})
|
| 140 |
return final_refusal.strip()
|
| 141 |
|
| 142 |
-
# If Wellness =>
|
| 143 |
if classification == "Wellness":
|
| 144 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
csv_answer = rag_result["result"].strip()
|
| 146 |
if not csv_answer:
|
| 147 |
web_answer = do_web_search(query)
|
|
@@ -151,19 +167,23 @@ def run_with_chain(query: str) -> str:
|
|
| 151 |
web_answer = do_web_search(query)
|
| 152 |
else:
|
| 153 |
web_answer = ""
|
|
|
|
| 154 |
final_merged = cleaner_chain.merge(kb=csv_answer, web=web_answer)
|
| 155 |
final_answer = tailor_chain.run({"response": final_merged})
|
| 156 |
return final_answer.strip()
|
| 157 |
|
| 158 |
-
# If Brand =>
|
| 159 |
if classification == "Brand":
|
| 160 |
-
rag_result = brand_rag_chain({
|
|
|
|
|
|
|
|
|
|
| 161 |
csv_answer = rag_result["result"].strip()
|
| 162 |
final_merged = cleaner_chain.merge(kb=csv_answer, web="")
|
| 163 |
final_answer = tailor_chain.run({"response": final_merged})
|
| 164 |
return final_answer.strip()
|
| 165 |
|
| 166 |
-
# fallback
|
| 167 |
refusal_text = refusal_chain.run({})
|
| 168 |
final_refusal = tailor_chain.run({"response": refusal_text})
|
| 169 |
return final_refusal.strip()
|
|
|
|
| 2 |
import os
|
| 3 |
import getpass
|
| 4 |
import pandas as pd
|
| 5 |
+
from typing import Optional, List
|
| 6 |
|
| 7 |
from langchain.docstore.document import Document
|
| 8 |
from langchain.embeddings import HuggingFaceEmbeddings
|
|
|
|
| 12 |
from smolagents import CodeAgent, DuckDuckGoSearchTool, ManagedAgent, LiteLLMModel
|
| 13 |
import litellm
|
| 14 |
|
| 15 |
+
# Import your classification/refusal/tailor/cleaner chains
|
| 16 |
from classification_chain import get_classification_chain
|
| 17 |
from refusal_chain import get_refusal_chain
|
| 18 |
from tailor_chain import get_tailor_chain
|
| 19 |
+
from cleaner_chain import get_cleaner_chain
|
| 20 |
|
| 21 |
+
# For RAG chain building
|
| 22 |
+
from langchain.llms.base import LLM
|
| 23 |
|
| 24 |
###############################################################################
|
| 25 |
+
# 1) Environment: set up keys
|
| 26 |
###############################################################################
|
| 27 |
if not os.environ.get("GEMINI_API_KEY"):
|
| 28 |
os.environ["GEMINI_API_KEY"] = getpass.getpass("Enter your Gemini API Key: ")
|
|
|
|
| 30 |
os.environ["GROQ_API_KEY"] = getpass.getpass("Enter your GROQ API Key: ")
|
| 31 |
|
| 32 |
###############################################################################
|
| 33 |
+
# 2) Build or Load VectorStore
|
| 34 |
###############################################################################
|
| 35 |
def build_or_load_vectorstore(csv_path: str, store_dir: str) -> FAISS:
|
| 36 |
if os.path.exists(store_dir):
|
|
|
|
| 43 |
df = pd.read_csv(csv_path)
|
| 44 |
df = df.loc[:, ~df.columns.str.contains('^Unnamed')]
|
| 45 |
df.columns = df.columns.str.strip()
|
| 46 |
+
|
| 47 |
if "Answer" in df.columns:
|
| 48 |
df.rename(columns={"Answer": "Answers"}, inplace=True)
|
| 49 |
if "Question" not in df.columns and "Question " in df.columns:
|
| 50 |
df.rename(columns={"Question ": "Question"}, inplace=True)
|
| 51 |
+
|
| 52 |
if "Question" not in df.columns or "Answers" not in df.columns:
|
| 53 |
raise ValueError("CSV must have 'Question' and 'Answers' columns.")
|
| 54 |
+
|
| 55 |
docs = []
|
| 56 |
for _, row in df.iterrows():
|
| 57 |
q = str(row["Question"])
|
| 58 |
ans = str(row["Answers"])
|
| 59 |
doc = Document(page_content=ans, metadata={"question": q})
|
| 60 |
docs.append(doc)
|
| 61 |
+
|
| 62 |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/multi-qa-mpnet-base-dot-v1")
|
| 63 |
vectorstore = FAISS.from_documents(docs, embedding=embeddings)
|
| 64 |
vectorstore.save_local(store_dir)
|
|
|
|
| 67 |
###############################################################################
|
| 68 |
# 3) Build RAG chain for Gemini
|
| 69 |
###############################################################################
|
|
|
|
| 70 |
def build_rag_chain(llm_model: LiteLLMModel, vectorstore: FAISS) -> RetrievalQA:
|
| 71 |
class GeminiLangChainLLM(LLM):
|
| 72 |
def _call(self, prompt: str, stop: Optional[list] = None, **kwargs) -> str:
|
| 73 |
+
# We'll treat the entire prompt as 'user' content
|
| 74 |
messages = [{"role": "user", "content": prompt}]
|
| 75 |
return llm_model(messages, stop_sequences=stop)
|
| 76 |
+
|
| 77 |
@property
|
| 78 |
def _llm_type(self) -> str:
|
| 79 |
return "custom_gemini"
|
| 80 |
+
|
| 81 |
retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 3})
|
| 82 |
gemini_as_llm = GeminiLangChainLLM()
|
| 83 |
rag_chain = RetrievalQA.from_chain_type(
|
|
|
|
| 89 |
return rag_chain
|
| 90 |
|
| 91 |
###############################################################################
|
| 92 |
+
# 4) Initialize your sub-chains
|
| 93 |
###############################################################################
|
|
|
|
| 94 |
classification_chain = get_classification_chain()
|
|
|
|
| 95 |
refusal_chain = get_refusal_chain()
|
|
|
|
| 96 |
tailor_chain = get_tailor_chain()
|
|
|
|
| 97 |
cleaner_chain = get_cleaner_chain()
|
| 98 |
|
| 99 |
###############################################################################
|
| 100 |
+
# 5) Build VectorStores & RAG Chains
|
| 101 |
###############################################################################
|
| 102 |
wellness_csv = "AIChatbot.csv"
|
| 103 |
brand_csv = "BrandAI.csv"
|
| 104 |
wellness_store_dir = "faiss_wellness_store"
|
| 105 |
brand_store_dir = "faiss_brand_store"
|
| 106 |
|
| 107 |
+
gemini_llm = LiteLLMModel(model_id="gemini/gemini-pro", api_key=os.environ.get("GEMINI_API_KEY"))
|
| 108 |
+
|
| 109 |
wellness_vectorstore = build_or_load_vectorstore(wellness_csv, wellness_store_dir)
|
| 110 |
brand_vectorstore = build_or_load_vectorstore(brand_csv, brand_store_dir)
|
| 111 |
|
|
|
|
| 112 |
wellness_rag_chain = build_rag_chain(gemini_llm, wellness_vectorstore)
|
| 113 |
brand_rag_chain = build_rag_chain(gemini_llm, brand_vectorstore)
|
| 114 |
|
|
|
|
|
|
|
|
|
|
| 115 |
search_tool = DuckDuckGoSearchTool()
|
| 116 |
web_agent = CodeAgent(tools=[search_tool], model=gemini_llm)
|
| 117 |
managed_web_agent = ManagedAgent(agent=web_agent, name="web_search", description="Runs web search for you.")
|
|
|
|
| 124 |
return response
|
| 125 |
|
| 126 |
###############################################################################
|
| 127 |
+
# 6) Orchestrator: run_with_chain_context
|
| 128 |
###############################################################################
|
| 129 |
+
def run_with_chain_context(query: str, chat_history: list) -> str:
|
| 130 |
+
"""
|
| 131 |
+
Like run_with_chain, but also references `chat_history`.
|
| 132 |
+
We'll do single-turn classification, but pass chat_history
|
| 133 |
+
to the RAG chain if needed.
|
| 134 |
+
|
| 135 |
+
Example usage:
|
| 136 |
+
chat_history = []
|
| 137 |
+
question = "What is Self-Reflection?"
|
| 138 |
+
resp1 = run_with_chain_context(question, chat_history)
|
| 139 |
+
# then chat_history.extend([...]) with HumanMessage/AIMessage
|
| 140 |
+
"""
|
| 141 |
+
print("DEBUG: Starting run_with_chain_context...")
|
| 142 |
+
|
| 143 |
+
# 1) Classification (no multi-turn, just single-turn classification)
|
| 144 |
class_result = classification_chain.invoke({"query": query})
|
| 145 |
classification = class_result.get("text", "").strip()
|
| 146 |
print("DEBUG: Classification =>", classification)
|
| 147 |
|
| 148 |
+
# 2) If OutOfScope => refusal => tailor => return
|
| 149 |
if classification == "OutOfScope":
|
| 150 |
refusal_text = refusal_chain.run({})
|
| 151 |
final_refusal = tailor_chain.run({"response": refusal_text})
|
| 152 |
return final_refusal.strip()
|
| 153 |
|
| 154 |
+
# 3) If Wellness => call wellness_rag_chain with chat_history
|
| 155 |
if classification == "Wellness":
|
| 156 |
+
# pass the conversation to .invoke(...) so it can see it if needed
|
| 157 |
+
rag_result = wellness_rag_chain.invoke({
|
| 158 |
+
"input": query,
|
| 159 |
+
"chat_history": chat_history # pass the entire list of prior messages
|
| 160 |
+
})
|
| 161 |
csv_answer = rag_result["result"].strip()
|
| 162 |
if not csv_answer:
|
| 163 |
web_answer = do_web_search(query)
|
|
|
|
| 167 |
web_answer = do_web_search(query)
|
| 168 |
else:
|
| 169 |
web_answer = ""
|
| 170 |
+
|
| 171 |
final_merged = cleaner_chain.merge(kb=csv_answer, web=web_answer)
|
| 172 |
final_answer = tailor_chain.run({"response": final_merged})
|
| 173 |
return final_answer.strip()
|
| 174 |
|
| 175 |
+
# 4) If Brand => brand_rag_chain with chat_history
|
| 176 |
if classification == "Brand":
|
| 177 |
+
rag_result = brand_rag_chain.invoke({
|
| 178 |
+
"input": query,
|
| 179 |
+
"chat_history": chat_history
|
| 180 |
+
})
|
| 181 |
csv_answer = rag_result["result"].strip()
|
| 182 |
final_merged = cleaner_chain.merge(kb=csv_answer, web="")
|
| 183 |
final_answer = tailor_chain.run({"response": final_merged})
|
| 184 |
return final_answer.strip()
|
| 185 |
|
| 186 |
+
# fallback => refusal
|
| 187 |
refusal_text = refusal_chain.run({})
|
| 188 |
final_refusal = tailor_chain.run({"response": refusal_text})
|
| 189 |
return final_refusal.strip()
|