generateAudio / app.py
SAUL19's picture
Update app.py
77e4720
raw
history blame
3.53 kB
import gradio as gr
from gradio.inputs import Textbox
import nltk
nltk.download('punkt')
from nltk.tokenize import word_tokenize
import re
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
from datasets import load_dataset
import torch
import random
import string
import soundfile as sf
import boto3
from io import BytesIO
import os
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
S3_BUCKET_NAME = os.getenv("BUCKET_NAME")
device = "cuda" if torch.cuda.is_available() else "cpu"
# load the processor
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
# load the model
model = SpeechT5ForTextToSpeech.from_pretrained(
"microsoft/speecht5_tts").to(device)
# load the vocoder, that is the voice encoder
vocoder = SpeechT5HifiGan.from_pretrained(
"microsoft/speecht5_hifigan").to(device)
# we load this dataset to get the speaker embeddings
embeddings_dataset = load_dataset(
"Matthijs/cmu-arctic-xvectors", split="validation")
# speaker ids from the embeddings dataset
speakers = {
'awb': 0, # Scottish male
'bdl': 1138, # US male
'clb': 2271, # US female
'jmk': 3403, # Canadian male
'ksp': 4535, # Indian male
'rms': 5667, # US male
'slt': 6799 # US female
}
def generateAudio(text_to_audio, s3_save_as):
s3_save_as = '-'.join(s3_save_as.split()) + ".wav"
def cut_text(text, max_tokens=500):
# Remove non-alphanumeric characters, except periods and commas
text = re.sub(r"[^\w\s.,]", "", text)
tokens = word_tokenize(text)
if len(tokens) <= max_tokens:
return text
cut = ' '.join(tokens[:max_tokens])
return cut
def save_audio_to_s3(audio):
# Create an instance of the S3 client
s3 = boto3.client('s3',
aws_access_key_id=AWS_ACCESS_KEY_ID,
aws_secret_access_key=AWS_SECRET_ACCESS_KEY)
# Full path of the file in the bucket
s3_key = "public/" + s3_save_as
# Upload the audio file to the S3 bucket
s3.upload_fileobj(audio, S3_BUCKET_NAME, s3_key)
def save_text_to_speech(text, speaker=None):
# Preprocess text and recortar
text = cut_text(text, max_tokens=500)
# preprocess text
inputs = processor(text=text, return_tensors="pt").to(device)
if speaker is not None:
# load xvector containing speaker's voice characteristics from a dataset
speaker_embeddings = torch.tensor(
embeddings_dataset[speaker]["xvector"]).unsqueeze(0).to(device)
else:
# random vector, meaning a random voice
speaker_embeddings = torch.randn((1, 512)).to(device)
# generate speech with the models
speech = model.generate_speech(
inputs["input_ids"], speaker_embeddings, vocoder=vocoder)
# create BytesIO object to store the audio
audio_buffer = BytesIO()
# save the generated speech to the BytesIO buffer
sf.write(audio_buffer, speech.cpu().numpy(), samplerate=16000, format='WAV')
audio_buffer.seek(0)
# Save the audio to S3
save_audio_to_s3(audio_buffer)
save_text_to_speech(text_to_audio, 2271)
return s3_save_as
iface = gr.Interface(fn=generateAudio, inputs=[Textbox(label="text_to_audio"), Textbox(label="S3url")], outputs="text")
iface.launch()