Spaces:
Paused
Paused
import gradio as gr | |
from gradio.inputs import Textbox | |
import nltk | |
nltk.download('punkt') | |
from nltk.tokenize import word_tokenize | |
import re | |
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan | |
from datasets import load_dataset | |
import torch | |
import random | |
import string | |
import soundfile as sf | |
import boto3 | |
from io import BytesIO | |
import os | |
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID") | |
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY") | |
S3_BUCKET_NAME = os.getenv("BUCKET_NAME") | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# load the processor | |
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") | |
# load the model | |
model = SpeechT5ForTextToSpeech.from_pretrained( | |
"microsoft/speecht5_tts").to(device) | |
# load the vocoder, that is the voice encoder | |
vocoder = SpeechT5HifiGan.from_pretrained( | |
"microsoft/speecht5_hifigan").to(device) | |
# we load this dataset to get the speaker embeddings | |
embeddings_dataset = load_dataset( | |
"Matthijs/cmu-arctic-xvectors", split="validation") | |
# speaker ids from the embeddings dataset | |
speakers = { | |
'awb': 0, # Scottish male | |
'bdl': 1138, # US male | |
'clb': 2271, # US female | |
'jmk': 3403, # Canadian male | |
'ksp': 4535, # Indian male | |
'rms': 5667, # US male | |
'slt': 6799 # US female | |
} | |
def generateAudio(text_to_audio, s3_save_as): | |
s3_save_as = '-'.join(save_as.split()) + ".wav" | |
def cut_text(text, max_tokens=500): | |
# Remove non-alphanumeric characters, except periods and commas | |
text = re.sub(r"[^\w\s.,]", "", text) | |
tokens = word_tokenize(text) | |
if len(tokens) <= max_tokens: | |
return text | |
cut = ' '.join(tokens[:max_tokens]) | |
return cut | |
def save_audio_to_s3(audio): | |
# Create an instance of the S3 client | |
s3 = boto3.client('s3', | |
aws_access_key_id=AWS_ACCESS_KEY_ID, | |
aws_secret_access_key=AWS_SECRET_ACCESS_KEY) | |
# Full path of the file in the bucket | |
s3_key = "public/" + s3_save_as | |
# Upload the audio file to the S3 bucket | |
s3.upload_fileobj(audio, S3_BUCKET_NAME, s3_key) | |
def save_text_to_speech(text, speaker=None): | |
# Preprocess text and recortar | |
text = cut_text(text, max_tokens=500) | |
# preprocess text | |
inputs = processor(text=text, return_tensors="pt").to(device) | |
if speaker is not None: | |
# load xvector containing speaker's voice characteristics from a dataset | |
speaker_embeddings = torch.tensor( | |
embeddings_dataset[speaker]["xvector"]).unsqueeze(0).to(device) | |
else: | |
# random vector, meaning a random voice | |
speaker_embeddings = torch.randn((1, 512)).to(device) | |
# generate speech with the models | |
speech = model.generate_speech( | |
inputs["input_ids"], speaker_embeddings, vocoder=vocoder) | |
# create BytesIO object to store the audio | |
audio_buffer = BytesIO() | |
# save the generated speech to the BytesIO buffer | |
sf.write(audio_buffer, speech.cpu().numpy(), samplerate=16000, format='WAV') | |
audio_buffer.seek(0) | |
# Save the audio to S3 | |
save_audio_to_s3(audio_buffer) | |
save_text_to_speech(text_to_audio, 2271) | |
return s3_save_as | |
iface = gr.Interface(fn=generateAudio, inputs=[Textbox(label="text_to_audio"), Textbox(label=" | |
")], outputs="text") | |
iface.launch() | |