Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
from gradio.inputs import Textbox
|
3 |
|
4 |
-
import nltk
|
5 |
-
nltk.download('punkt')
|
6 |
-
from nltk.tokenize import sent_tokenize, word_tokenize
|
7 |
-
|
8 |
import re
|
9 |
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
|
10 |
from datasets import load_dataset
|
@@ -57,18 +53,8 @@ def generateAudio(text_to_audio, s3_save_as):
|
|
57 |
|
58 |
# Remove line breaks
|
59 |
text = re.sub(r"\n", " ", text)
|
60 |
-
|
61 |
-
|
62 |
-
tokens = []
|
63 |
-
for sentence in sentences:
|
64 |
-
tokens.extend(word_tokenize(sentence))
|
65 |
-
|
66 |
-
if len(tokens) <= max_tokens:
|
67 |
-
return text
|
68 |
-
|
69 |
-
cut_tokens = tokens[:max_tokens]
|
70 |
-
cut = ' '.join(cut_tokens)
|
71 |
-
return cut
|
72 |
|
73 |
def save_audio_to_s3(audio):
|
74 |
# Create an instance of the S3 client
|
@@ -86,8 +72,9 @@ def generateAudio(text_to_audio, s3_save_as):
|
|
86 |
# Preprocess text and recortar
|
87 |
text = cut_text(text, max_tokens=500)
|
88 |
|
89 |
-
# Divide el texto en segmentos de
|
90 |
-
|
|
|
91 |
|
92 |
# Generar audio para cada segmento y combinarlos
|
93 |
audio_segments = []
|
@@ -106,10 +93,11 @@ def generateAudio(text_to_audio, s3_save_as):
|
|
106 |
audio_buffer = BytesIO()
|
107 |
sf.write(audio_buffer, combined_audio.cpu().numpy(), samplerate=16000, format='WAV')
|
108 |
audio_buffer.seek(0)
|
109 |
-
|
110 |
# Guardar el audio combinado en S3
|
111 |
save_audio_to_s3(audio_buffer)
|
112 |
-
|
|
|
113 |
save_text_to_speech(text_to_audio, 2271)
|
114 |
return s3_save_as
|
115 |
|
|
|
1 |
import gradio as gr
|
2 |
from gradio.inputs import Textbox
|
3 |
|
|
|
|
|
|
|
|
|
4 |
import re
|
5 |
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
|
6 |
from datasets import load_dataset
|
|
|
53 |
|
54 |
# Remove line breaks
|
55 |
text = re.sub(r"\n", " ", text)
|
56 |
+
|
57 |
+
return text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
def save_audio_to_s3(audio):
|
60 |
# Create an instance of the S3 client
|
|
|
72 |
# Preprocess text and recortar
|
73 |
text = cut_text(text, max_tokens=500)
|
74 |
|
75 |
+
# Divide el texto en segmentos de 30 palabras
|
76 |
+
palabras = text.split()
|
77 |
+
segmentos = [' '.join(palabras[i:i+30]) for i in range(0, len(palabras), 30)]
|
78 |
|
79 |
# Generar audio para cada segmento y combinarlos
|
80 |
audio_segments = []
|
|
|
93 |
audio_buffer = BytesIO()
|
94 |
sf.write(audio_buffer, combined_audio.cpu().numpy(), samplerate=16000, format='WAV')
|
95 |
audio_buffer.seek(0)
|
96 |
+
|
97 |
# Guardar el audio combinado en S3
|
98 |
save_audio_to_s3(audio_buffer)
|
99 |
+
|
100 |
+
|
101 |
save_text_to_speech(text_to_audio, 2271)
|
102 |
return s3_save_as
|
103 |
|