Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,10 @@
|
|
1 |
import gradio as gr
|
2 |
from gradio.inputs import Textbox
|
|
|
3 |
import nltk
|
4 |
nltk.download('punkt')
|
5 |
from nltk.tokenize import word_tokenize
|
|
|
6 |
import re
|
7 |
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
|
8 |
from datasets import load_dataset
|
@@ -19,7 +21,6 @@ AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
|
|
19 |
S3_BUCKET_NAME = os.getenv("BUCKET_NAME")
|
20 |
|
21 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
22 |
-
|
23 |
# load the processor
|
24 |
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
25 |
# load the model
|
@@ -28,7 +29,7 @@ model = SpeechT5ForTextToSpeech.from_pretrained(
|
|
28 |
# load the vocoder, that is the voice encoder
|
29 |
vocoder = SpeechT5HifiGan.from_pretrained(
|
30 |
"microsoft/speecht5_hifigan").to(device)
|
31 |
-
# load
|
32 |
embeddings_dataset = load_dataset(
|
33 |
"Matthijs/cmu-arctic-xvectors", split="validation")
|
34 |
|
@@ -44,18 +45,29 @@ speakers = {
|
|
44 |
}
|
45 |
|
46 |
def generateAudio(text_to_audio, s3_save_as):
|
47 |
-
|
48 |
def cut_text(text, max_tokens=500):
|
49 |
# Remove non-alphanumeric characters, except periods and commas
|
50 |
text = re.sub(r"[^\w\s.,]", "", text)
|
51 |
|
52 |
-
tokens = word_tokenize(
|
53 |
if len(tokens) <= max_tokens:
|
54 |
return text
|
55 |
|
56 |
cut = ' '.join(tokens[:max_tokens])
|
57 |
return cut
|
58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
def save_text_to_speech(text, speaker=None):
|
61 |
# Preprocess text and recortar
|
@@ -74,39 +86,27 @@ def generateAudio(text_to_audio, s3_save_as):
|
|
74 |
inputs["input_ids"], speaker_embeddings, vocoder=vocoder)
|
75 |
if speaker is not None:
|
76 |
# if we have a speaker, we use the speaker's ID in the filename
|
77 |
-
output_filename = f"{speaker}-{'-'.join(text.split()[:6])}.
|
78 |
else:
|
79 |
# if we don't have a speaker, we use a random string in the filename
|
80 |
random_str = ''.join(random.sample(
|
81 |
string.ascii_letters+string.digits, k=5))
|
82 |
-
output_filename = f"{random_str}-{'-'.join(text.split()[:6])}.
|
83 |
-
|
84 |
-
# Save the generated speech to BytesIO buffer
|
85 |
audio_buffer = BytesIO()
|
86 |
-
|
|
|
87 |
audio_buffer.seek(0)
|
88 |
|
89 |
-
#
|
90 |
-
|
91 |
-
s3 = boto3.client(
|
92 |
-
's3',
|
93 |
-
aws_access_key_id=AWS_ACCESS_KEY_ID,
|
94 |
-
aws_secret_access_key=AWS_SECRET_ACCESS_KEY
|
95 |
-
)
|
96 |
-
s3.upload_fileobj(audio_buffer, S3_BUCKET_NAME, s3_key)
|
97 |
-
|
98 |
-
# Return the S3 URL of the uploaded audio file
|
99 |
-
s3_url = f"https://{S3_BUCKET_NAME}.s3.amazonaws.com/{s3_key}"
|
100 |
-
return s3_url
|
101 |
|
|
|
|
|
102 |
|
103 |
-
|
104 |
-
return f"Saved audio: {s3_url}"
|
105 |
|
|
|
106 |
|
107 |
-
iface = gr.Interface(
|
108 |
-
fn=generateAudio,
|
109 |
-
inputs=[Textbox(label="Text to Audio"), Textbox(label="S3 Save As")],
|
110 |
-
outputs="text"
|
111 |
-
)
|
112 |
iface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from gradio.inputs import Textbox
|
3 |
+
|
4 |
import nltk
|
5 |
nltk.download('punkt')
|
6 |
from nltk.tokenize import word_tokenize
|
7 |
+
|
8 |
import re
|
9 |
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
|
10 |
from datasets import load_dataset
|
|
|
21 |
S3_BUCKET_NAME = os.getenv("BUCKET_NAME")
|
22 |
|
23 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
24 |
# load the processor
|
25 |
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
26 |
# load the model
|
|
|
29 |
# load the vocoder, that is the voice encoder
|
30 |
vocoder = SpeechT5HifiGan.from_pretrained(
|
31 |
"microsoft/speecht5_hifigan").to(device)
|
32 |
+
# we load this dataset to get the speaker embeddings
|
33 |
embeddings_dataset = load_dataset(
|
34 |
"Matthijs/cmu-arctic-xvectors", split="validation")
|
35 |
|
|
|
45 |
}
|
46 |
|
47 |
def generateAudio(text_to_audio, s3_save_as):
|
48 |
+
|
49 |
def cut_text(text, max_tokens=500):
|
50 |
# Remove non-alphanumeric characters, except periods and commas
|
51 |
text = re.sub(r"[^\w\s.,]", "", text)
|
52 |
|
53 |
+
tokens = word_tokenize(text)
|
54 |
if len(tokens) <= max_tokens:
|
55 |
return text
|
56 |
|
57 |
cut = ' '.join(tokens[:max_tokens])
|
58 |
return cut
|
59 |
|
60 |
+
def save_audio_to_s3(audio, filename):
|
61 |
+
# Create an instance of the S3 client
|
62 |
+
s3 = boto3.client('s3',
|
63 |
+
aws_access_key_id=AWS_ACCESS_KEY_ID,
|
64 |
+
aws_secret_access_key=AWS_SECRET_ACCESS_KEY)
|
65 |
+
|
66 |
+
# Full path of the file in the bucket
|
67 |
+
s3_key = "public/" + filename
|
68 |
+
|
69 |
+
# Upload the audio file to the S3 bucket
|
70 |
+
s3.upload_fileobj(audio, S3_BUCKET_NAME, s3_key)
|
71 |
|
72 |
def save_text_to_speech(text, speaker=None):
|
73 |
# Preprocess text and recortar
|
|
|
86 |
inputs["input_ids"], speaker_embeddings, vocoder=vocoder)
|
87 |
if speaker is not None:
|
88 |
# if we have a speaker, we use the speaker's ID in the filename
|
89 |
+
output_filename = f"{speaker}-{'-'.join(text.split()[:6])}.wav"
|
90 |
else:
|
91 |
# if we don't have a speaker, we use a random string in the filename
|
92 |
random_str = ''.join(random.sample(
|
93 |
string.ascii_letters+string.digits, k=5))
|
94 |
+
output_filename = f"{random_str}-{'-'.join(text.split()[:6])}.wav"
|
95 |
+
# create BytesIO object to store the audio
|
|
|
96 |
audio_buffer = BytesIO()
|
97 |
+
# save the generated speech to the BytesIO buffer
|
98 |
+
sf.write(audio_buffer, speech.cpu().numpy(), samplerate=16000, format='WAV')
|
99 |
audio_buffer.seek(0)
|
100 |
|
101 |
+
# Save the audio to S3
|
102 |
+
save_audio_to_s3(audio_buffer, output_filename)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
+
# return the filename for reference
|
105 |
+
return output_filename
|
106 |
|
107 |
+
output_filename = save_text_to_speech(text_to_audio, "clb")
|
|
|
108 |
|
109 |
+
return f"Saved {output_filename}"
|
110 |
|
111 |
+
iface = gr.Interface(fn=generateAudio, inputs=[Textbox(label="text_to_audio"), Textbox(label="s3_save_as")], outputs="text")
|
|
|
|
|
|
|
|
|
112 |
iface.launch()
|