Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -46,83 +46,67 @@ def generateAudio(text_to_audio, s3_save_as, key_id):
|
|
46 |
|
47 |
if AWS_ACCESS_KEY_ID != key_id:
|
48 |
return "not permition"
|
49 |
-
|
50 |
s3_save_as = '-'.join(s3_save_as.split()) + ".wav"
|
51 |
-
|
52 |
def cut_text(text, max_tokens=500):
|
53 |
# Remove non-alphanumeric characters, except periods and commas
|
54 |
text = re.sub(r"[^\w\s.,]", "", text)
|
55 |
-
|
56 |
# Replace multiple spaces with a single space
|
57 |
text = re.sub(r"\s{2,}", " ", text)
|
58 |
-
|
59 |
# Remove line breaks
|
60 |
text = re.sub(r"\n", " ", text)
|
61 |
|
62 |
return text
|
63 |
|
64 |
def save_audio_to_s3(audio):
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
|
|
|
|
|
|
|
|
75 |
|
76 |
def save_text_to_speech(text, speaker=None):
|
77 |
# Preprocess text and recortar
|
78 |
text = cut_text(text, max_tokens=500)
|
79 |
-
|
80 |
-
#
|
81 |
palabras = text.split()
|
82 |
-
|
83 |
-
|
84 |
-
|
|
|
|
|
|
|
85 |
if speaker is not None:
|
86 |
-
speaker_embeddings = torch.tensor(
|
87 |
-
embeddings_dataset[speaker]["xvector"]).unsqueeze(0).to(device)
|
88 |
else:
|
89 |
speaker_embeddings = torch.randn((1, 512)).to(device)
|
90 |
-
speech = model.generate_speech(
|
91 |
-
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
-
# Crear objeto BytesIO para almacenar el audio
|
95 |
-
audio_buffer = BytesIO()
|
96 |
-
sf.write(audio_buffer, combined_audio.cpu().numpy(),
|
97 |
-
samplerate=16000, format='WAV')
|
98 |
-
audio_buffer.seek(0)
|
99 |
-
|
100 |
-
# Guardar el audio combinado en S3
|
101 |
-
save_audio_to_s3(audio_buffer)
|
102 |
-
else:
|
103 |
-
# Divide el texto en segmentos de 30 palabras
|
104 |
-
segmentos = [' '.join(palabras[i:i+30])
|
105 |
-
for i in range(0, len(palabras), 30)]
|
106 |
|
107 |
-
# Generar audio para cada segmento y combinarlos
|
108 |
-
audio_segments = []
|
109 |
-
for segment in segmentos:
|
110 |
-
inputs = processor(
|
111 |
-
text=segment, return_tensors="pt").to(device)
|
112 |
-
if speaker is not None:
|
113 |
-
speaker_embeddings = torch.tensor(
|
114 |
-
embeddings_dataset[speaker]["xvector"]).unsqueeze(0).to(device)
|
115 |
-
else:
|
116 |
-
speaker_embeddings = torch.randn((1, 512)).to(device)
|
117 |
-
speech = model.generate_speech(
|
118 |
-
inputs["input_ids"], speaker_embeddings, vocoder=vocoder)
|
119 |
-
audio_segments.append(speech)
|
120 |
-
|
121 |
-
if len(audio_segments) > 0:
|
122 |
-
combined_audio = torch.cat(audio_segments, dim=0)
|
123 |
-
else:
|
124 |
-
combined_audio = None
|
125 |
-
|
126 |
save_text_to_speech(text_to_audio, 2271)
|
127 |
return s3_save_as
|
128 |
|
@@ -165,9 +149,6 @@ def list_s3_files():
|
|
165 |
filename = os.path.splitext(filename_ext)[0]
|
166 |
s3audio = 'public/%s.wav' % filename
|
167 |
|
168 |
-
print("GENERATING ------------------")
|
169 |
-
print(filename_ext)
|
170 |
-
|
171 |
if check_if_exist(S3_BUCKET_NAME, s3audio):
|
172 |
print('Audio %s already exists!' % s3audio)
|
173 |
else:
|
@@ -175,7 +156,6 @@ def list_s3_files():
|
|
175 |
response = s3_client.get_object(Bucket=S3_BUCKET_NAME, Key=KEY)
|
176 |
content = response['Body'].read().decode('utf-8')
|
177 |
|
178 |
-
print(content)
|
179 |
if (len(content)):
|
180 |
generateAudio(content, filename, AWS_ACCESS_KEY_ID)
|
181 |
print("SUCCESS " + filename + ".wap")
|
|
|
46 |
|
47 |
if AWS_ACCESS_KEY_ID != key_id:
|
48 |
return "not permition"
|
49 |
+
|
50 |
s3_save_as = '-'.join(s3_save_as.split()) + ".wav"
|
51 |
+
|
52 |
def cut_text(text, max_tokens=500):
|
53 |
# Remove non-alphanumeric characters, except periods and commas
|
54 |
text = re.sub(r"[^\w\s.,]", "", text)
|
55 |
+
|
56 |
# Replace multiple spaces with a single space
|
57 |
text = re.sub(r"\s{2,}", " ", text)
|
58 |
+
|
59 |
# Remove line breaks
|
60 |
text = re.sub(r"\n", " ", text)
|
61 |
|
62 |
return text
|
63 |
|
64 |
def save_audio_to_s3(audio):
|
65 |
+
try:
|
66 |
+
# Create an instance of the S3 client
|
67 |
+
s3 = boto3.client('s3',
|
68 |
+
aws_access_key_id=AWS_ACCESS_KEY_ID,
|
69 |
+
aws_secret_access_key=AWS_SECRET_ACCESS_KEY)
|
70 |
+
|
71 |
+
# Full path of the file in the bucket
|
72 |
+
s3_key = "public/" + s3_save_as
|
73 |
+
|
74 |
+
# Upload the audio file to the S3 bucket
|
75 |
+
s3.upload_fileobj(audio, S3_BUCKET_NAME, s3_key)
|
76 |
+
|
77 |
+
Exception:
|
78 |
+
print("Error al guardar")
|
79 |
|
80 |
def save_text_to_speech(text, speaker=None):
|
81 |
# Preprocess text and recortar
|
82 |
text = cut_text(text, max_tokens=500)
|
83 |
+
|
84 |
+
# Divide el texto en segmentos de 30 palabras
|
85 |
palabras = text.split()
|
86 |
+
segmentos = [' '.join(palabras[i:i+30]) for i in range(0, len(palabras), 30)]
|
87 |
+
|
88 |
+
# Generar audio para cada segmento y combinarlos
|
89 |
+
audio_segments = []
|
90 |
+
for segment in segmentos:
|
91 |
+
inputs = processor(text=segment, return_tensors="pt").to(device)
|
92 |
if speaker is not None:
|
93 |
+
speaker_embeddings = torch.tensor(embeddings_dataset[speaker]["xvector"]).unsqueeze(0).to(device)
|
|
|
94 |
else:
|
95 |
speaker_embeddings = torch.randn((1, 512)).to(device)
|
96 |
+
speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder)
|
97 |
+
audio_segments.append(speech)
|
98 |
+
|
99 |
+
combined_audio = torch.cat(audio_segments, dim=0)
|
100 |
+
|
101 |
+
# Crear objeto BytesIO para almacenar el audio
|
102 |
+
audio_buffer = BytesIO()
|
103 |
+
sf.write(audio_buffer, combined_audio.cpu().numpy(), samplerate=16000, format='WAV')
|
104 |
+
audio_buffer.seek(0)
|
105 |
+
|
106 |
+
# Guardar el audio combinado en S3
|
107 |
+
save_audio_to_s3(audio_buffer)
|
108 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
save_text_to_speech(text_to_audio, 2271)
|
111 |
return s3_save_as
|
112 |
|
|
|
149 |
filename = os.path.splitext(filename_ext)[0]
|
150 |
s3audio = 'public/%s.wav' % filename
|
151 |
|
|
|
|
|
|
|
152 |
if check_if_exist(S3_BUCKET_NAME, s3audio):
|
153 |
print('Audio %s already exists!' % s3audio)
|
154 |
else:
|
|
|
156 |
response = s3_client.get_object(Bucket=S3_BUCKET_NAME, Key=KEY)
|
157 |
content = response['Body'].read().decode('utf-8')
|
158 |
|
|
|
159 |
if (len(content)):
|
160 |
generateAudio(content, filename, AWS_ACCESS_KEY_ID)
|
161 |
print("SUCCESS " + filename + ".wap")
|