Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,11 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
from diffusers import StableDiffusionPipeline
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
model_id = "CompVis/stable-diffusion-v1-4"
|
6 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
@@ -10,15 +15,42 @@ pipe = StableDiffusionPipeline.from_pretrained(
|
|
10 |
|
11 |
pipe = pipe.to(device)
|
12 |
|
13 |
-
def
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
iface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
from diffusers import StableDiffusionPipeline
|
4 |
+
import os
|
5 |
+
|
6 |
+
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
|
7 |
+
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
|
8 |
+
S3_BUCKET_NAME = os.getenv("BUCKET_NAME")
|
9 |
|
10 |
model_id = "CompVis/stable-diffusion-v1-4"
|
11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
15 |
|
16 |
pipe = pipe.to(device)
|
17 |
|
18 |
+
def text_to_image(text):
|
19 |
+
# Crea una instancia del cliente de S3
|
20 |
+
s3 = boto3.client('s3',
|
21 |
+
aws_access_key_id=AWS_ACCESS_KEY_ID,
|
22 |
+
aws_secret_access_key=AWS_SECRET_ACCESS_KEY)
|
23 |
+
|
24 |
+
def save_image_to_s3(image, image_name):
|
25 |
+
# Crea un objeto de BytesIO para almacenar la imagen
|
26 |
+
image_buffer = BytesIO()
|
27 |
+
image.save(image_buffer, format='PNG')
|
28 |
+
image_buffer.seek(0)
|
29 |
+
|
30 |
+
# Define la ruta de destino en el bucket de S3
|
31 |
+
s3_key = f"public/{image_name}"
|
32 |
+
|
33 |
+
# Sube la imagen al bucket de S3 en la ruta especificada
|
34 |
+
s3.upload_fileobj(image_buffer, bucket_name, s3_key)
|
35 |
+
|
36 |
+
def generator_image(text):
|
37 |
+
prompt = text
|
38 |
+
image = pipe(prompt).images[0]
|
39 |
+
image_name = '-'.join(prompt.split()) + ".png"
|
40 |
+
|
41 |
+
# Guarda la imagen en S3
|
42 |
+
save_image_to_s3(image, image_name)
|
43 |
+
|
44 |
+
return image_name
|
45 |
+
|
46 |
+
def generator_image_interface(text):
|
47 |
+
image_name = generator_image(text)
|
48 |
+
return f"Imagen generada: {image_name}"
|
49 |
+
|
50 |
+
# generate image
|
51 |
+
generator_image_interface(text);
|
52 |
+
|
53 |
+
|
54 |
+
|
55 |
+
iface = gr.Interface(fn=text_to_image, inputs="text", outputs="text")
|
56 |
iface.launch()
|