Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import time
|
| 3 |
+
from datetime import datetime
|
| 4 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 5 |
+
import torch
|
| 6 |
+
|
| 7 |
+
@st.cache(allow_output_mutation=True)
|
| 8 |
+
def opt_model(prompt, num_sequences = 1, max_length = 50):
|
| 9 |
+
model = AutoModelForCausalLM.from_pretrained("facebook/opt-30b", torch_dtype=torch.float16).cuda()
|
| 10 |
+
tokenizer = AutoTokenizer.from_pretrained("facebook/opt-30b", use_fast=False)
|
| 11 |
+
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.cuda()
|
| 12 |
+
generated_ids = model.generate(input_ids, num_return_sequences=num_sequences, max_length=max_length)
|
| 13 |
+
answer = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
|
| 14 |
+
return answer
|
| 15 |
+
|
| 16 |
+
prompt= st.text_area('Your prompt here',
|
| 17 |
+
'''Hello, I'm am conscious and''')
|
| 18 |
+
|
| 19 |
+
answer = opt_model(prompt)
|
| 20 |
+
#lst = ['ciao come stai sjfsbd dfhsdf fuahfuf feuhfu wefwu ']
|
| 21 |
+
lst = ' '.join(answer)
|
| 22 |
+
|
| 23 |
+
t = st.empty()
|
| 24 |
+
for i in range(len(lst)):
|
| 25 |
+
t.markdown("### %s..." % lst[0:i])
|
| 26 |
+
time.sleep(0.04)
|