Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,638 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import yfinance as yf
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import numpy as np
|
| 5 |
+
from datetime import datetime
|
| 6 |
+
import plotly.graph_objects as go
|
| 7 |
+
from plotly.subplots import make_subplots
|
| 8 |
+
import pixeltable as pxt
|
| 9 |
+
from pixeltable.functions import openai
|
| 10 |
+
import json
|
| 11 |
+
import os
|
| 12 |
+
import getpass
|
| 13 |
+
from typing import Dict, Any
|
| 14 |
+
|
| 15 |
+
# Set up OpenAI API key
|
| 16 |
+
if 'OPENAI_API_KEY' not in os.environ:
|
| 17 |
+
os.environ['OPENAI_API_KEY'] = getpass.getpass('Enter your OpenAI API key: ')
|
| 18 |
+
|
| 19 |
+
class NumpyEncoder(json.JSONEncoder):
|
| 20 |
+
def default(self, obj):
|
| 21 |
+
if isinstance(obj, (np.int_, np.intc, np.intp, np.int8,
|
| 22 |
+
np.int16, np.int32, np.int64, np.uint8,
|
| 23 |
+
np.uint16, np.uint32, np.uint64)):
|
| 24 |
+
return int(obj)
|
| 25 |
+
elif isinstance(obj, (np.float_, np.float16, np.float32, np.float64)):
|
| 26 |
+
return float(obj)
|
| 27 |
+
elif isinstance(obj, (np.ndarray,)):
|
| 28 |
+
return obj.tolist()
|
| 29 |
+
return json.JSONEncoder.default(self, obj)
|
| 30 |
+
|
| 31 |
+
def safe_json_serialize(obj):
|
| 32 |
+
return json.dumps(obj, cls=NumpyEncoder)
|
| 33 |
+
|
| 34 |
+
def calculate_basic_indicators(data: pd.DataFrame) -> pd.DataFrame:
|
| 35 |
+
df = data.copy()
|
| 36 |
+
|
| 37 |
+
# Moving averages
|
| 38 |
+
df['MA20'] = df['Close'].rolling(window=20).mean()
|
| 39 |
+
df['MA50'] = df['Close'].rolling(window=50).mean()
|
| 40 |
+
df['MA200'] = df['Close'].rolling(window=200).mean()
|
| 41 |
+
|
| 42 |
+
# RSI
|
| 43 |
+
delta = df['Close'].diff()
|
| 44 |
+
gain = (delta.where(delta > 0, 0)).rolling(window=14).mean()
|
| 45 |
+
loss = (-delta.where(delta < 0, 0)).rolling(window=14).mean()
|
| 46 |
+
rs = gain / loss
|
| 47 |
+
df['RSI'] = 100 - (100 / (1 + rs))
|
| 48 |
+
|
| 49 |
+
# MACD
|
| 50 |
+
exp1 = df['Close'].ewm(span=12, adjust=False).mean()
|
| 51 |
+
exp2 = df['Close'].ewm(span=26, adjust=False).mean()
|
| 52 |
+
df['MACD'] = exp1 - exp2
|
| 53 |
+
df['MACD_Signal'] = df['MACD'].ewm(span=9, adjust=False).mean()
|
| 54 |
+
|
| 55 |
+
return df.ffill().bfill()
|
| 56 |
+
|
| 57 |
+
# Also update the system prompt in generate_analysis_prompt to ensure structured output:
|
| 58 |
+
@pxt.udf
|
| 59 |
+
def generate_analysis_prompt(data: str, analysis_type: str) -> list[dict]:
|
| 60 |
+
"""Generate a structured prompt for AI analysis"""
|
| 61 |
+
system_prompt = '''You are a financial analyst providing market analysis. Structure your response using EXACTLY the following format and sections:
|
| 62 |
+
|
| 63 |
+
SUMMARY
|
| 64 |
+
Provide a clear 2-3 sentence executive summary of your analysis.
|
| 65 |
+
|
| 66 |
+
TECHNICAL ANALYSIS
|
| 67 |
+
β’ Moving Averages: Analyze trends using MA20, MA50, and MA200
|
| 68 |
+
β’ RSI Analysis: Current RSI level and implications
|
| 69 |
+
β’ MACD Analysis: MACD trends and signals
|
| 70 |
+
β’ Volume Analysis: Notable volume patterns and implications
|
| 71 |
+
|
| 72 |
+
MARKET CONTEXT
|
| 73 |
+
β’ List 2-3 key market factors affecting the stock
|
| 74 |
+
β’ Include relevant sector/industry context
|
| 75 |
+
β’ Note any significant recent developments
|
| 76 |
+
|
| 77 |
+
RISKS
|
| 78 |
+
β’ Risk 1: [Specific risk and brief explanation]
|
| 79 |
+
β’ Risk 2: [Specific risk and brief explanation]
|
| 80 |
+
β’ Risk 3: [Specific risk and brief explanation]
|
| 81 |
+
|
| 82 |
+
OPPORTUNITIES
|
| 83 |
+
β’ Opportunity 1: [Specific opportunity and brief explanation]
|
| 84 |
+
β’ Opportunity 2: [Specific opportunity and brief explanation]
|
| 85 |
+
β’ Opportunity 3: [Specific opportunity and brief explanation]
|
| 86 |
+
|
| 87 |
+
RECOMMENDATION
|
| 88 |
+
Provide a clear, actionable investment recommendation based on the analysis above.'''
|
| 89 |
+
|
| 90 |
+
return [
|
| 91 |
+
{'role': 'system', 'content': system_prompt},
|
| 92 |
+
{'role': 'user', 'content': f'Analyze this market data for {analysis_type} analysis:\n{data}'}
|
| 93 |
+
]
|
| 94 |
+
|
| 95 |
+
def parse_analysis_response(response: str) -> Dict[str, str]:
|
| 96 |
+
"""Parse the structured AI response into sections with support for markdown formatting"""
|
| 97 |
+
sections = {
|
| 98 |
+
'SUMMARY': None,
|
| 99 |
+
'TECHNICAL ANALYSIS': None,
|
| 100 |
+
'MARKET CONTEXT': None,
|
| 101 |
+
'RISKS': None,
|
| 102 |
+
'OPPORTUNITIES': None,
|
| 103 |
+
'RECOMMENDATION': None
|
| 104 |
+
}
|
| 105 |
+
|
| 106 |
+
current_section = None
|
| 107 |
+
buffer = []
|
| 108 |
+
|
| 109 |
+
if not response or not response.strip():
|
| 110 |
+
return {k: "Analysis not available" for k in sections.keys()}
|
| 111 |
+
|
| 112 |
+
for line in response.split('\n'):
|
| 113 |
+
line = line.strip()
|
| 114 |
+
|
| 115 |
+
# Check if this line is a section header (now handling markdown formatting)
|
| 116 |
+
matched_section = None
|
| 117 |
+
for section in sections.keys():
|
| 118 |
+
# Remove asterisks and check for exact match
|
| 119 |
+
cleaned_line = line.replace('*', '').strip()
|
| 120 |
+
if cleaned_line == section:
|
| 121 |
+
matched_section = section
|
| 122 |
+
break
|
| 123 |
+
|
| 124 |
+
if matched_section:
|
| 125 |
+
# Save previous section if exists
|
| 126 |
+
if current_section and buffer:
|
| 127 |
+
sections[current_section] = '\n'.join(buffer).strip()
|
| 128 |
+
current_section = matched_section
|
| 129 |
+
buffer = []
|
| 130 |
+
elif current_section and line:
|
| 131 |
+
# Clean up markdown formatting in content
|
| 132 |
+
cleaned_content = line.replace('*', '').strip()
|
| 133 |
+
if cleaned_content: # Only add non-empty lines
|
| 134 |
+
buffer.append(cleaned_content)
|
| 135 |
+
|
| 136 |
+
# Save the last section
|
| 137 |
+
if current_section and buffer:
|
| 138 |
+
sections[current_section] = '\n'.join(buffer).strip()
|
| 139 |
+
|
| 140 |
+
# Clean up sections and provide meaningful defaults
|
| 141 |
+
section_messages = {
|
| 142 |
+
'SUMMARY': 'Market analysis summary not available',
|
| 143 |
+
'TECHNICAL ANALYSIS': 'Technical analysis not available',
|
| 144 |
+
'MARKET CONTEXT': 'Market context information not available',
|
| 145 |
+
'RISKS': 'Risk assessment not available',
|
| 146 |
+
'OPPORTUNITIES': 'Opportunity analysis not available',
|
| 147 |
+
'RECOMMENDATION': 'Investment recommendation not available'
|
| 148 |
+
}
|
| 149 |
+
|
| 150 |
+
# Only use default messages if section is truly empty
|
| 151 |
+
for key in sections:
|
| 152 |
+
if sections[key] is None or not sections[key].strip():
|
| 153 |
+
sections[key] = section_messages[key]
|
| 154 |
+
|
| 155 |
+
return sections
|
| 156 |
+
|
| 157 |
+
def create_visualization(data: pd.DataFrame, technical_depth: str) -> go.Figure:
|
| 158 |
+
fig = make_subplots(
|
| 159 |
+
rows=3 if technical_depth == 'advanced' else 2,
|
| 160 |
+
cols=1,
|
| 161 |
+
shared_xaxes=True,
|
| 162 |
+
vertical_spacing=0.05,
|
| 163 |
+
subplot_titles=('Price & Moving Averages', 'Volume', 'RSI' if technical_depth == 'advanced' else None)
|
| 164 |
+
)
|
| 165 |
+
|
| 166 |
+
# Price candlesticks with improved styling
|
| 167 |
+
fig.add_trace(
|
| 168 |
+
go.Candlestick(
|
| 169 |
+
x=data.index,
|
| 170 |
+
open=data['Open'],
|
| 171 |
+
high=data['High'],
|
| 172 |
+
low=data['Low'],
|
| 173 |
+
close=data['Close'],
|
| 174 |
+
name='Price',
|
| 175 |
+
increasing_line_color='#26A69A',
|
| 176 |
+
decreasing_line_color='#EF5350'
|
| 177 |
+
),
|
| 178 |
+
row=1, col=1
|
| 179 |
+
)
|
| 180 |
+
|
| 181 |
+
# Moving averages with distinct colors
|
| 182 |
+
colors = {'MA20': '#1E88E5', 'MA50': '#FFC107', 'MA200': '#7B1FA2'}
|
| 183 |
+
for ma, color in colors.items():
|
| 184 |
+
fig.add_trace(
|
| 185 |
+
go.Scatter(
|
| 186 |
+
x=data.index,
|
| 187 |
+
y=data[ma],
|
| 188 |
+
name=ma,
|
| 189 |
+
line=dict(color=color, width=1.5)
|
| 190 |
+
),
|
| 191 |
+
row=1, col=1
|
| 192 |
+
)
|
| 193 |
+
|
| 194 |
+
# Volume with color based on price change
|
| 195 |
+
colors = ['#26A69A' if close >= open_price else '#EF5350'
|
| 196 |
+
for close, open_price in zip(data['Close'].values, data['Open'].values)]
|
| 197 |
+
fig.add_trace(
|
| 198 |
+
go.Bar(
|
| 199 |
+
x=data.index,
|
| 200 |
+
y=data['Volume'],
|
| 201 |
+
name='Volume',
|
| 202 |
+
marker_color=colors
|
| 203 |
+
),
|
| 204 |
+
row=2, col=1
|
| 205 |
+
)
|
| 206 |
+
|
| 207 |
+
if technical_depth == 'advanced':
|
| 208 |
+
fig.add_trace(
|
| 209 |
+
go.Scatter(
|
| 210 |
+
x=data.index,
|
| 211 |
+
y=data['RSI'],
|
| 212 |
+
name='RSI',
|
| 213 |
+
line=dict(color='#7C4DFF', width=1.5)
|
| 214 |
+
),
|
| 215 |
+
row=3, col=1
|
| 216 |
+
)
|
| 217 |
+
|
| 218 |
+
# Add RSI reference lines
|
| 219 |
+
fig.add_hline(y=70, line_dash="dash", line_color="red", row=3, col=1)
|
| 220 |
+
fig.add_hline(y=30, line_dash="dash", line_color="green", row=3, col=1)
|
| 221 |
+
|
| 222 |
+
fig.update_layout(
|
| 223 |
+
height=800,
|
| 224 |
+
template='plotly_white',
|
| 225 |
+
showlegend=True,
|
| 226 |
+
legend=dict(
|
| 227 |
+
orientation="h",
|
| 228 |
+
yanchor="bottom",
|
| 229 |
+
y=1.02,
|
| 230 |
+
xanchor="right",
|
| 231 |
+
x=1
|
| 232 |
+
)
|
| 233 |
+
)
|
| 234 |
+
|
| 235 |
+
# Update y-axes labels
|
| 236 |
+
fig.update_yaxes(title_text="Price", row=1, col=1)
|
| 237 |
+
fig.update_yaxes(title_text="Volume", row=2, col=1)
|
| 238 |
+
if technical_depth == 'advanced':
|
| 239 |
+
fig.update_yaxes(title_text="RSI", row=3, col=1)
|
| 240 |
+
|
| 241 |
+
return fig
|
| 242 |
+
|
| 243 |
+
def process_outputs(ticker_symbol, analysis_type, time_horizon, risk_tolerance,
|
| 244 |
+
investment_style, technical_depth, include_market_context=True,
|
| 245 |
+
max_positions=3):
|
| 246 |
+
try:
|
| 247 |
+
# Initialize Pixeltable
|
| 248 |
+
pxt.drop_dir('financial_analysis', force=True)
|
| 249 |
+
pxt.create_dir('financial_analysis')
|
| 250 |
+
|
| 251 |
+
data_table = pxt.create_table(
|
| 252 |
+
'financial_analysis.stock_data',
|
| 253 |
+
{
|
| 254 |
+
'ticker': pxt.StringType(),
|
| 255 |
+
'data': pxt.StringType(),
|
| 256 |
+
'timestamp': pxt.TimestampType()
|
| 257 |
+
}
|
| 258 |
+
)
|
| 259 |
+
|
| 260 |
+
# Fetch and process data
|
| 261 |
+
stock = yf.Ticker(ticker_symbol.strip().upper())
|
| 262 |
+
market_data = stock.history(period='1y')
|
| 263 |
+
if market_data.empty:
|
| 264 |
+
raise ValueError("No data found for the specified ticker symbol.")
|
| 265 |
+
|
| 266 |
+
technical_data = calculate_basic_indicators(market_data)
|
| 267 |
+
market_data_json = technical_data.to_json(date_format='iso')
|
| 268 |
+
|
| 269 |
+
# Store data and generate analysis
|
| 270 |
+
data_table.insert([{
|
| 271 |
+
'ticker': ticker_symbol.upper(),
|
| 272 |
+
'data': market_data_json,
|
| 273 |
+
'timestamp': datetime.now()
|
| 274 |
+
}])
|
| 275 |
+
|
| 276 |
+
data_table['prompt'] = generate_analysis_prompt(data_table.data, analysis_type)
|
| 277 |
+
data_table['analysis'] = openai.chat_completions(
|
| 278 |
+
messages=data_table.prompt,
|
| 279 |
+
model='gpt-4o-mini-2024-07-18',
|
| 280 |
+
temperature=0.7,
|
| 281 |
+
max_tokens=1000
|
| 282 |
+
)
|
| 283 |
+
|
| 284 |
+
# Process the analysis with better error handling
|
| 285 |
+
try:
|
| 286 |
+
analysis_text = data_table.select(
|
| 287 |
+
analysis=data_table.analysis.choices[0].message.content
|
| 288 |
+
).tail(1)['analysis'][0]
|
| 289 |
+
parsed_analysis = parse_analysis_response(analysis_text)
|
| 290 |
+
except Exception as analysis_error:
|
| 291 |
+
print(f"Analysis error: {str(analysis_error)}")
|
| 292 |
+
parsed_analysis = parse_analysis_response("") # This will return default messages
|
| 293 |
+
|
| 294 |
+
# Prepare company info with proper JSON formatting
|
| 295 |
+
company_info_data = {
|
| 296 |
+
'Name': str(stock.info.get('longName', 'N/A')),
|
| 297 |
+
'Sector': str(stock.info.get('sector', 'N/A')),
|
| 298 |
+
'Industry': str(stock.info.get('industry', 'N/A')),
|
| 299 |
+
'Exchange': str(stock.info.get('exchange', 'N/A'))
|
| 300 |
+
}
|
| 301 |
+
|
| 302 |
+
raw_llm_output = ""
|
| 303 |
+
try:
|
| 304 |
+
raw_llm_output = data_table.select(
|
| 305 |
+
analysis=data_table.analysis.choices[0].message.content
|
| 306 |
+
).tail(1)['analysis'][0]
|
| 307 |
+
parsed_analysis = parse_analysis_response(raw_llm_output)
|
| 308 |
+
except Exception as analysis_error:
|
| 309 |
+
print(f"Analysis error: {str(analysis_error)}")
|
| 310 |
+
parsed_analysis = parse_analysis_response("")
|
| 311 |
+
raw_llm_output = f"Error processing analysis: {str(analysis_error)}"
|
| 312 |
+
|
| 313 |
+
# Prepare market stats with proper number formatting
|
| 314 |
+
try:
|
| 315 |
+
current_price = float(technical_data['Close'].iloc[-1])
|
| 316 |
+
previous_price = float(technical_data['Close'].iloc[-2])
|
| 317 |
+
daily_change = float((current_price / previous_price - 1) * 100)
|
| 318 |
+
volume = int(technical_data['Volume'].iloc[-1])
|
| 319 |
+
rsi = float(technical_data['RSI'].iloc[-1])
|
| 320 |
+
except (IndexError, KeyError, TypeError):
|
| 321 |
+
current_price = daily_change = volume = rsi = 0
|
| 322 |
+
|
| 323 |
+
market_stats_data = {
|
| 324 |
+
'Current Price': f"${current_price:.2f}",
|
| 325 |
+
'Daily Change': f"{daily_change:.2f}%",
|
| 326 |
+
'Volume': f"{volume:,}",
|
| 327 |
+
'RSI': f"{rsi:.2f}"
|
| 328 |
+
}
|
| 329 |
+
|
| 330 |
+
# Add timestamp to technical data
|
| 331 |
+
technical_data_with_time = technical_data.reset_index()
|
| 332 |
+
technical_data_with_time['Date'] = technical_data_with_time['Date'].dt.strftime('%Y-%m-%d %H:%M:%S')
|
| 333 |
+
|
| 334 |
+
# Create visualization
|
| 335 |
+
plot = create_visualization(technical_data, technical_depth)
|
| 336 |
+
|
| 337 |
+
return (
|
| 338 |
+
json.dumps(company_info_data),
|
| 339 |
+
json.dumps(market_stats_data),
|
| 340 |
+
plot,
|
| 341 |
+
parsed_analysis['SUMMARY'],
|
| 342 |
+
parsed_analysis['TECHNICAL ANALYSIS'],
|
| 343 |
+
parsed_analysis['MARKET CONTEXT'],
|
| 344 |
+
parsed_analysis['RISKS'],
|
| 345 |
+
parsed_analysis['OPPORTUNITIES'],
|
| 346 |
+
parsed_analysis['RECOMMENDATION'],
|
| 347 |
+
technical_data_with_time,
|
| 348 |
+
raw_llm_output # Add raw output to return values
|
| 349 |
+
)
|
| 350 |
+
|
| 351 |
+
except Exception as e:
|
| 352 |
+
error_msg = f"Error processing data: {str(e)}"
|
| 353 |
+
empty_json = json.dumps({})
|
| 354 |
+
no_data_msg = "Analysis not available due to data processing error"
|
| 355 |
+
empty_df = pd.DataFrame()
|
| 356 |
+
|
| 357 |
+
return (
|
| 358 |
+
empty_json,
|
| 359 |
+
empty_json,
|
| 360 |
+
None,
|
| 361 |
+
no_data_msg,
|
| 362 |
+
no_data_msg,
|
| 363 |
+
no_data_msg,
|
| 364 |
+
no_data_msg,
|
| 365 |
+
no_data_msg,
|
| 366 |
+
no_data_msg,
|
| 367 |
+
empty_df,
|
| 368 |
+
f"Error occurred: {str(e)}" # Add error message to raw output
|
| 369 |
+
)
|
| 370 |
+
|
| 371 |
+
def create_interface() -> gr.Blocks:
|
| 372 |
+
"""Create the production-ready Gradio interface"""
|
| 373 |
+
with gr.Blocks(theme=gr.themes.Base()) as demo:
|
| 374 |
+
# Header
|
| 375 |
+
gr.Markdown(
|
| 376 |
+
"""
|
| 377 |
+
# π AI Financial Analysis Platform
|
| 378 |
+
AI-powered market analysis and technical indicators. The creators and operators of this tool are not responsible for any financial losses or decisions made based on this analysis.
|
| 379 |
+
"""
|
| 380 |
+
)
|
| 381 |
+
|
| 382 |
+
# Information Accordions
|
| 383 |
+
with gr.Row():
|
| 384 |
+
with gr.Column():
|
| 385 |
+
with gr.Accordion("π― What does it do?", open=False):
|
| 386 |
+
gr.Markdown("""
|
| 387 |
+
This platform provides comprehensive financial analysis tools:
|
| 388 |
+
|
| 389 |
+
1. π **Technical Analysis**: Advanced indicators, e.g. RSI, and MACD
|
| 390 |
+
2. π€ **AI-Powered Insights**: Intelligent market analysis/recommendations
|
| 391 |
+
3. π **Interactive Charts**: Visual representation of movements/indicators
|
| 392 |
+
4. π‘ **Investment Context**: Market conditions and sector analysis
|
| 393 |
+
5. β‘ **Real-time Data**: Up-to-date information through Yahoo Finance
|
| 394 |
+
6. π― **Personalized Analysis**: Tailored to your style/risk tolerance
|
| 395 |
+
""")
|
| 396 |
+
|
| 397 |
+
with gr.Column():
|
| 398 |
+
with gr.Accordion("π οΈ How does it work?", open=False):
|
| 399 |
+
gr.Markdown("""
|
| 400 |
+
The platform leverages several advanced technologies:
|
| 401 |
+
|
| 402 |
+
1. π¦ **Data Processing**: Pixeltable manages and orchestrate data
|
| 403 |
+
2. π **Technical Indicators**: Custom algorithms calculate market metrics
|
| 404 |
+
3. π€ **AI Analysis**: Advanced language models provide market insights
|
| 405 |
+
4. π **Visualization**: Interactive charts using Plotly
|
| 406 |
+
5. π **Real-time Updates**: Direct connection to market data feeds
|
| 407 |
+
6. πΎ **Data Persistence**: Reliable storage and retrieval of insights
|
| 408 |
+
""")
|
| 409 |
+
|
| 410 |
+
# Disclaimer
|
| 411 |
+
gr.HTML(
|
| 412 |
+
"""
|
| 413 |
+
<div style="background-color: #FFF4E5; border: 1px solid #FFE0B2; color: #663C00; border-radius: 8px; padding: 15px; margin: 15px 0;">
|
| 414 |
+
<strong>β οΈ Disclaimer:</strong>
|
| 415 |
+
<p style="margin: 8px 0;">
|
| 416 |
+
This tool provides financial analysis for informational purposes only and should not be considered as financial advice.
|
| 417 |
+
Before making any investment decisions, please:
|
| 418 |
+
</p>
|
| 419 |
+
<ul style="margin: 8px 0;">
|
| 420 |
+
<li>Consult with qualified financial advisors</li>
|
| 421 |
+
<li>Conduct your own research</li>
|
| 422 |
+
<li>Consider your personal financial situation</li>
|
| 423 |
+
<li>Be aware that past performance does not guarantee future results</li>
|
| 424 |
+
<li>Understand that all investments carry risk</li>
|
| 425 |
+
</ul>
|
| 426 |
+
</div>
|
| 427 |
+
"""
|
| 428 |
+
)
|
| 429 |
+
|
| 430 |
+
with gr.Row():
|
| 431 |
+
# Left sidebar for inputs (reduced width)
|
| 432 |
+
with gr.Column(scale=1):
|
| 433 |
+
with gr.Row():
|
| 434 |
+
gr.Markdown("### π Analysis Parameters")
|
| 435 |
+
with gr.Row():
|
| 436 |
+
ticker_input = gr.Textbox(
|
| 437 |
+
label="Stock Ticker",
|
| 438 |
+
placeholder="e.g., AAPL",
|
| 439 |
+
max_lines=1
|
| 440 |
+
)
|
| 441 |
+
analysis_type = gr.Radio(
|
| 442 |
+
choices=['comprehensive', 'quantitative', 'technical'],
|
| 443 |
+
label="Analysis Type",
|
| 444 |
+
value='comprehensive'
|
| 445 |
+
)
|
| 446 |
+
technical_depth = gr.Radio(
|
| 447 |
+
choices=['basic', 'advanced'],
|
| 448 |
+
label="Technical Depth",
|
| 449 |
+
value='advanced'
|
| 450 |
+
)
|
| 451 |
+
|
| 452 |
+
with gr.Row():
|
| 453 |
+
gr.Markdown("### π― Investment Profile")
|
| 454 |
+
with gr.Row():
|
| 455 |
+
time_horizon = gr.Radio(
|
| 456 |
+
choices=['short', 'medium', 'long'],
|
| 457 |
+
label="Time Horizon",
|
| 458 |
+
value='medium'
|
| 459 |
+
)
|
| 460 |
+
risk_tolerance = gr.Radio(
|
| 461 |
+
choices=['conservative', 'moderate', 'aggressive'],
|
| 462 |
+
label="Risk Tolerance",
|
| 463 |
+
value='moderate'
|
| 464 |
+
)
|
| 465 |
+
investment_style = gr.Dropdown(
|
| 466 |
+
choices=['value', 'growth', 'momentum', 'balanced', 'income'],
|
| 467 |
+
label="Investment Style",
|
| 468 |
+
value='balanced'
|
| 469 |
+
)
|
| 470 |
+
|
| 471 |
+
analyze_btn = gr.Button("π Analyze Stock", variant="primary")
|
| 472 |
+
|
| 473 |
+
with gr.Row():
|
| 474 |
+
with gr.Column(scale=3):
|
| 475 |
+
with gr.Tabs() as tabs:
|
| 476 |
+
with gr.TabItem("π Analysis Dashboard"):
|
| 477 |
+
# Top row with company info and market stats
|
| 478 |
+
with gr.Row(equal_height=True):
|
| 479 |
+
with gr.Column(scale=1):
|
| 480 |
+
company_info = gr.JSON(
|
| 481 |
+
label="Company Information",
|
| 482 |
+
height=150
|
| 483 |
+
)
|
| 484 |
+
with gr.Column(scale=1):
|
| 485 |
+
market_stats = gr.JSON(
|
| 486 |
+
label="Market Statistics",
|
| 487 |
+
height=150
|
| 488 |
+
)
|
| 489 |
+
|
| 490 |
+
with gr.TabItem("π Historical Data"):
|
| 491 |
+
technical_data = gr.DataFrame(
|
| 492 |
+
headers=["Date", "Open", "High", "Low", "Close",
|
| 493 |
+
"Volume", "MA20", "MA50", "MA200", "RSI",
|
| 494 |
+
"MACD", "MACD_Signal"],
|
| 495 |
+
)
|
| 496 |
+
|
| 497 |
+
with gr.TabItem("π Debug View"):
|
| 498 |
+
raw_output = gr.Textbox(
|
| 499 |
+
label="Raw LLM Output",
|
| 500 |
+
lines=10,
|
| 501 |
+
max_lines=20,
|
| 502 |
+
show_label=True,
|
| 503 |
+
interactive=False
|
| 504 |
+
)
|
| 505 |
+
gr.Markdown("""
|
| 506 |
+
### Debug Information
|
| 507 |
+
This tab shows the raw output from the language model before parsing.
|
| 508 |
+
Use this to diagnose any issues with the analysis display.
|
| 509 |
+
""")
|
| 510 |
+
# Technical analysis chart
|
| 511 |
+
with gr.Row():
|
| 512 |
+
with gr.Column(scale=1):
|
| 513 |
+
with gr.Row():
|
| 514 |
+
gr.Markdown("### π Technical Analysis Chart")
|
| 515 |
+
|
| 516 |
+
with gr.Row():
|
| 517 |
+
plot_output = gr.Plot()
|
| 518 |
+
|
| 519 |
+
# AI Analysis section with better layout
|
| 520 |
+
with gr.Row():
|
| 521 |
+
with gr.Column(scale=2):
|
| 522 |
+
with gr.Row():
|
| 523 |
+
gr.Markdown("### π€ AI Analysis")
|
| 524 |
+
|
| 525 |
+
# Summary at the top
|
| 526 |
+
with gr.Row():
|
| 527 |
+
summary = gr.Textbox(
|
| 528 |
+
label="Executive Summary",
|
| 529 |
+
lines=3,
|
| 530 |
+
max_lines=5,
|
| 531 |
+
show_label=True
|
| 532 |
+
)
|
| 533 |
+
|
| 534 |
+
# Main analysis sections
|
| 535 |
+
with gr.Row():
|
| 536 |
+
with gr.Column(scale=1):
|
| 537 |
+
tech_analysis = gr.Textbox(
|
| 538 |
+
label="Technical Analysis",
|
| 539 |
+
lines=8,
|
| 540 |
+
max_lines=10,
|
| 541 |
+
show_label=True
|
| 542 |
+
)
|
| 543 |
+
market_context = gr.Textbox(
|
| 544 |
+
label="Market Context",
|
| 545 |
+
lines=4,
|
| 546 |
+
max_lines=6,
|
| 547 |
+
show_label=True
|
| 548 |
+
)
|
| 549 |
+
|
| 550 |
+
with gr.Column(scale=1):
|
| 551 |
+
risks = gr.Textbox(
|
| 552 |
+
label="Key Risks",
|
| 553 |
+
lines=5,
|
| 554 |
+
max_lines=7,
|
| 555 |
+
show_label=True
|
| 556 |
+
)
|
| 557 |
+
opportunities = gr.Textbox(
|
| 558 |
+
label="Key Opportunities",
|
| 559 |
+
lines=5,
|
| 560 |
+
max_lines=7,
|
| 561 |
+
show_label=True
|
| 562 |
+
)
|
| 563 |
+
|
| 564 |
+
# Recommendation at the bottom
|
| 565 |
+
with gr.Row():
|
| 566 |
+
recommendation = gr.Textbox(
|
| 567 |
+
label="Investment Recommendation",
|
| 568 |
+
lines=3,
|
| 569 |
+
max_lines=5,
|
| 570 |
+
show_label=True
|
| 571 |
+
)
|
| 572 |
+
|
| 573 |
+
# Examples section at the bottom
|
| 574 |
+
gr.Examples(
|
| 575 |
+
examples=[
|
| 576 |
+
["AAPL", "comprehensive", "medium", "moderate", "balanced", "advanced"],
|
| 577 |
+
["MSFT", "technical", "short", "aggressive", "momentum", "basic"],
|
| 578 |
+
["GOOGL", "quantitative", "long", "conservative", "value", "advanced"]
|
| 579 |
+
],
|
| 580 |
+
inputs=[
|
| 581 |
+
ticker_input, analysis_type, time_horizon, risk_tolerance,
|
| 582 |
+
investment_style, technical_depth
|
| 583 |
+
]
|
| 584 |
+
)
|
| 585 |
+
|
| 586 |
+
# Footer
|
| 587 |
+
gr.HTML(
|
| 588 |
+
"""
|
| 589 |
+
<div style="margin-top: 2rem; padding-top: 1rem; border-top: 1px solid #e5e7eb;">
|
| 590 |
+
<div style="display: flex; justify-content: space-between; align-items: center; flex-wrap: wrap; gap: 1rem;">
|
| 591 |
+
<div style="flex: 1;">
|
| 592 |
+
<h4 style="margin: 0; color: #374151;">π Built with Pixeltable</h4>
|
| 593 |
+
<p style="margin: 0.5rem 0; color: #6b7280;">
|
| 594 |
+
Open Source AI Data infrastructure for building intelligent applications.
|
| 595 |
+
</p>
|
| 596 |
+
</div>
|
| 597 |
+
<div style="flex: 1;">
|
| 598 |
+
<h4 style="margin: 0; color: #374151;">π Resources</h4>
|
| 599 |
+
<div style="display: flex; gap: 1.5rem; margin-top: 0.5rem;">
|
| 600 |
+
<a href="https://github.com/pixeltable/pixeltable" target="_blank" style="color: #4F46E5; text-decoration: none; display: flex; align-items: center; gap: 0.25rem;">
|
| 601 |
+
π» GitHub
|
| 602 |
+
</a>
|
| 603 |
+
<a href="https://docs.pixeltable.com" target="_blank" style="color: #4F46E5; text-decoration: none; display: flex; align-items: center; gap: 0.25rem;">
|
| 604 |
+
π Documentation
|
| 605 |
+
</a>
|
| 606 |
+
<a href="https://huggingface.co/Pixeltable" target="_blank" style="color: #4F46E5; text-decoration: none; display: flex; align-items: center; gap: 0.25rem;">
|
| 607 |
+
π€ Hugging Face
|
| 608 |
+
</a>
|
| 609 |
+
</div>
|
| 610 |
+
</div>
|
| 611 |
+
</div>
|
| 612 |
+
<p style="margin: 1rem 0 0; text-align: center; color: #9CA3AF; font-size: 0.875rem;">
|
| 613 |
+
Β© 2024 AI Financial Analysis Platform powered by Pixeltable.
|
| 614 |
+
This work is licensed under the Apache License 2.0.
|
| 615 |
+
</p>
|
| 616 |
+
</div>
|
| 617 |
+
"""
|
| 618 |
+
)
|
| 619 |
+
|
| 620 |
+
analyze_btn.click(
|
| 621 |
+
process_outputs,
|
| 622 |
+
inputs=[
|
| 623 |
+
ticker_input, analysis_type, time_horizon, risk_tolerance,
|
| 624 |
+
investment_style, technical_depth
|
| 625 |
+
],
|
| 626 |
+
outputs=[
|
| 627 |
+
company_info, market_stats, plot_output,
|
| 628 |
+
summary, tech_analysis, market_context,
|
| 629 |
+
risks, opportunities, recommendation,
|
| 630 |
+
technical_data, raw_output # Add raw_output to outputs
|
| 631 |
+
]
|
| 632 |
+
)
|
| 633 |
+
|
| 634 |
+
return demo
|
| 635 |
+
|
| 636 |
+
if __name__ == "__main__":
|
| 637 |
+
demo = create_interface()
|
| 638 |
+
demo.launch()
|