File size: 8,949 Bytes
201bb3e
 
 
f0a88ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
201bb3e
 
 
 
 
 
 
58c6bad
201bb3e
 
 
 
f0a88ca
201bb3e
 
58c6bad
201bb3e
f0a88ca
 
201bb3e
 
58c6bad
201bb3e
f0a88ca
 
 
201bb3e
 
f0a88ca
 
 
201bb3e
f0a88ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
201bb3e
f0a88ca
 
 
201bb3e
f0a88ca
 
 
 
 
 
 
201bb3e
 
 
f0a88ca
 
201bb3e
 
f0a88ca
 
 
 
201bb3e
 
f0a88ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
201bb3e
f0a88ca
 
 
 
 
 
201bb3e
f0a88ca
201bb3e
f0a88ca
201bb3e
 
f0a88ca
 
 
 
 
 
 
 
 
 
 
 
 
 
201bb3e
f0a88ca
201bb3e
 
 
 
58c6bad
f0a88ca
 
201bb3e
 
 
 
f0a88ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
201bb3e
f0a88ca
 
 
 
 
 
 
 
201bb3e
 
 
 
 
f0a88ca
201bb3e
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import gradio as gr
from .processor import process_document

SYNTHESIS_MODES = {
    "narration": {
        "description": "Simple document narration with clear voice and natural pacing",
        "styles": ["Technical", "Narrative", "Instructional", "Descriptive"],
        "default_temp": 0.7,
        "default_chunks": 300,
        "system_prompt": """Convert this content into clear narration.
            Format:
            - Clear sentence structures
            - Natural pauses (...)
            - Term definitions when needed
            - Proper transitions"""
    },
    "podcast": {
        "description": "Conversational style with engaging tone and dynamic pacing",
        "styles": ["Casual", "Interview", "Educational", "Commentary"],
        "default_temp": 0.8,
        "default_chunks": 400,
        "system_prompt": """Transform this content into engaging podcast-style speech."""
    },
    "presentation": {
        "description": "Professional presentation style with clear structure",
        "styles": ["Business", "Academic", "Sales", "Training"],
        "default_temp": 0.6,
        "default_chunks": 250,
        "system_prompt": """Convert this content into a presentation format."""
    },
    "storytelling": {
        "description": "Narrative style with emotional engagement",
        "styles": ["Dynamic", "Dramatic", "Calm", "Energetic"],
        "default_temp": 0.9,
        "default_chunks": 500,
        "system_prompt": """Transform this content into an engaging story."""
    }
}

def create_interface():
    with gr.Blocks(theme=gr.themes.Base()) as demo:
        gr.HTML(
            """
            <div style="margin-bottom: 1rem;">
                <img src="https://raw.githubusercontent.com/pixeltable/pixeltable/main/docs/source/data/pixeltable-logo-large.png" 
                     alt="Pixeltable" style="max-width: 150px;" />
                <h1>📄 Document to Audio Synthesis 🎧</h1>
            </div>
            """
        )

        # Overview Row
        with gr.Row():
            with gr.Column():
                with gr.Accordion("🎯 What does it do?", open=True):
                    gr.Markdown("""
                        - 📄 Document processing  - 🧠 Content transformation
                        - 🎧 Audio synthesis  - ⚙️ Multiple output styles
                    """)
            with gr.Column():
                with gr.Accordion("⚡ How does it work?", open=True):
                    gr.Markdown("""
                        1. 📑 **Processing:** Token-based segmentation
                        2. 🔍 **Analysis:** LLM optimization & scripts
                        3. 🎵 **Synthesis:** Multiple voice options
                    """)

        synthesis_mode = gr.State(SYNTHESIS_MODES["narration"])

        # Main Input Row
        with gr.Row():
            # Left Column - Core Inputs
            with gr.Column(scale=1):
                with gr.Row():
                    api_key = gr.Textbox(
                        label="🔑 OpenAI API Key",
                        placeholder="sk-...",
                        type="password",
                        scale=2
                    )
                    file_input = gr.File(
                        label="📁 Input PDF",
                        file_types=[".pdf"],
                        scale=1
                    )

            # Right Column - Mode Selection
            with gr.Column(scale=1):
                mode_select = gr.Radio(
                    choices=list(SYNTHESIS_MODES.keys()),
                    value="narration",
                    label="🎭 Output Mode",
                    info="Select output type"
                )
                mode_description = gr.Markdown(
                    SYNTHESIS_MODES["narration"]["description"],
                    elem_classes=["mode-description"]
                )

        # Parameters Row
        with gr.Row():
            # Voice and Style Column
            with gr.Column():
                with gr.Box():
                    gr.Markdown("### 🎛️ Voice & Style")
                    voice_select = gr.Radio(
                        choices=["alloy", "echo", "fable", "onyx", "nova", "shimmer"],
                        value="onyx",
                        label="🎙️ Voice",
                        interactive=True
                    )
                    style_select = gr.Radio(
                        choices=SYNTHESIS_MODES["narration"]["styles"],
                        value=SYNTHESIS_MODES["narration"]["styles"][0],
                        label="💫 Style",
                        interactive=True
                    )

            # Processing Parameters Column
            with gr.Column():
                with gr.Box():
                    gr.Markdown("### ⚙️ Processing")
                    with gr.Row():
                        chunk_size = gr.Slider(
                            minimum=100, maximum=1000,
                            value=SYNTHESIS_MODES["narration"]["default_chunks"],
                            step=50,
                            label="📏 Chunk Size"
                        )
                        temperature = gr.Slider(
                            minimum=0, maximum=1,
                            value=SYNTHESIS_MODES["narration"]["default_temp"],
                            step=0.1,
                            label="🌡️ Temperature"
                        )
                        max_tokens = gr.Slider(
                            minimum=100, maximum=1000,
                            value=300,
                            step=50,
                            label="📊 Tokens"
                        )

        # Process Button Row
        with gr.Row():
            process_btn = gr.Button("🚀 Generate Audio", variant="primary", scale=2)
            status_output = gr.Textbox(label="📋 Status", scale=1)

        # Output Tabs Row
        with gr.Tabs():
            with gr.Tab("📝 Content"):
                output_table = gr.Dataframe(
                    headers=["🔍 Segment", "📄 Content", "🎭 Script"],
                    wrap=True
                )
            with gr.Tab("🎧 Audio"):
                with gr.Row():
                    audio_output = gr.Audio(
                        label="🔊 Output",
                        type="filepath",
                        show_download_button=True
                    )
                    with gr.Column():
                        gr.Markdown("""
                            ### 📚 Quick Tips
                            - 🎯 Lower temperature = more consistent output
                            - 📏 Smaller chunks = more precise control
                            - 🎙️ Try different voices for best results
                        """)

        # Footer
        gr.HTML(
            """
            <div style="text-align: center; margin-top: 1rem; padding-top: 1rem; border-top: 1px solid #ccc;">
                <p style="margin: 0; color: #666; font-size: 0.8em;">
                    🚀 Powered by <a href="https://github.com/pixeltable/pixeltable" target="_blank" style="color: #F25022; text-decoration: none;">Pixeltable</a>
                    | 📚 <a href="https://docs.pixeltable.io" target="_blank" style="color: #666;">Docs</a>
                    | 🤗 <a href="https://huggingface.co/spaces/Pixeltable/document-to-audio-synthesis" target="_blank" style="color: #666;">HF Space</a>
                </p>
            </div>
            """
        )

        def update_mode(mode_name):
            mode = SYNTHESIS_MODES[mode_name]
            return (
                gr.update(choices=mode["styles"], value=mode["styles"][0]),
                gr.update(value=mode["default_chunks"]),
                gr.update(value=mode["default_temp"]),
                mode["description"]
            )

        mode_select.change(
            update_mode,
            inputs=[mode_select],
            outputs=[style_select, chunk_size, temperature, mode_description]
        )

        def update_interface(pdf_file, api_key, mode_name, voice, style, chunk_size, temperature, max_tokens):
            mode = SYNTHESIS_MODES[mode_name]
            return process_document(
                pdf_file=pdf_file,
                api_key=api_key,
                voice_choice=voice,
                style_choice=style,
                chunk_size=chunk_size,
                temperature=temperature,
                max_tokens=max_tokens,
                system_prompt=mode["system_prompt"]
            )
        
        process_btn.click(
            update_interface,
            inputs=[
                file_input, api_key, mode_select, voice_select, style_select,
                chunk_size, temperature, max_tokens
            ],
            outputs=[output_table, audio_output, status_output]
        )
    
    return demo