import gradio as gr
from .processor import process_document
def create_interface():
with gr.Blocks(theme=gr.themes.Base()) as demo:
gr.HTML(
"""
Document to Audio Synthesis
"""
)
with gr.Row():
with gr.Column():
with gr.Accordion("What does it do?", open=True):
gr.Markdown("""
- PDF document processing and text extraction
- Intelligent content transformation and summarization
- High-quality audio synthesis with voice selection
- Configurable processing parameters
- Downloadable audio output
""")
with gr.Column():
with gr.Accordion("How does it work?", open=True):
gr.Markdown("""
1. **Document Processing**
- Chunks document using token-based segmentation
- Maintains document structure and context
2. **Content Processing**
- Transforms text using LLM optimization
- Generates optimized audio scripts
3. **Audio Synthesis**
- Converts scripts to natural speech
- Multiple voice models available
""")
with gr.Row():
with gr.Column():
api_key = gr.Textbox(
label="OpenAI API Key",
placeholder="sk-...",
type="password"
)
file_input = gr.File(
label="Input Document (PDF)",
file_types=[".pdf"]
)
with gr.Accordion("Synthesis Parameters", open=True):
voice_select = gr.Radio(
choices=["alloy", "echo", "fable", "onyx", "nova", "shimmer"],
value="onyx",
label="Voice Model",
info="TTS voice model selection"
)
style_select = gr.Radio(
choices=["Technical", "Narrative", "Instructional", "Descriptive"],
value="Technical",
label="Processing Style",
info="Content processing approach"
)
with gr.Accordion("Processing Parameters", open=False):
chunk_size = gr.Slider(
minimum=100, maximum=1000, value=300, step=50,
label="Chunk Size (tokens)",
info="Text segmentation size"
)
temperature = gr.Slider(
minimum=0, maximum=1, value=0.7, step=0.1,
label="Temperature",
info="LLM randomness factor"
)
max_tokens = gr.Slider(
minimum=100, maximum=1000, value=300, step=50,
label="Max Tokens",
info="Maximum output token limit"
)
process_btn = gr.Button("Process Document", variant="primary")
status_output = gr.Textbox(label="Status")
with gr.Tabs():
with gr.TabItem("Content Processing"):
output_table = gr.Dataframe(
headers=["Segment", "Processed Content", "Audio Script"],
wrap=True
)
with gr.TabItem("Audio Output"):
audio_output = gr.Audio(
label="Synthesized Audio",
type="filepath",
show_download_button=True
)
gr.Markdown("""
### Technical Notes
- Token limit affects processing speed and memory usage
- Temperature values > 0.8 may introduce content variations
- Audio synthesis has a 4096 token limit per segment
### Performance Considerations
- Chunk size directly impacts processing time
- Higher temperatures increase LLM compute time
- Audio synthesis scales with script length
""")
gr.HTML(
"""
"""
)
def update_interface(pdf_file, api_key, voice, style, chunk_size, temperature, max_tokens):
return process_document(
pdf_file, api_key, voice, style, chunk_size, temperature, max_tokens
)
process_btn.click(
update_interface,
inputs=[
file_input, api_key, voice_select, style_select,
chunk_size, temperature, max_tokens
],
outputs=[output_table, audio_output, status_output]
)
return demo