import gradio as gr
from .processor import process_document
def create_interface():
with gr.Blocks(theme=gr.themes.Base()) as demo:
gr.HTML(
"""
📄 Document to Audio Synthesis 🎧
"""
)
with gr.Row():
with gr.Column():
with gr.Accordion("🎯 What does it do?", open=True):
gr.Markdown("""
- 📄 PDF document processing and text extraction
- 🧠 Intelligent content transformation and summarization
- 🎧 High-quality audio synthesis with voice selection
- ⚙️ Configurable processing parameters
- ⬇️ Downloadable audio output
""")
with gr.Column():
with gr.Accordion("⚡ How does it work?", open=True):
gr.Markdown("""
1. 📑 **Document Processing**
- 📊 Chunks document using token-based segmentation
- 🔄 Maintains document structure and context
2. 🔍 **Content Processing**
- 🤖 Transforms text using LLM optimization
- 📝 Generates optimized audio scripts
3. 🎵 **Audio Synthesis**
- 🗣️ Converts scripts to natural speech
- 🎙️ Multiple voice models available
""")
with gr.Row():
with gr.Column():
api_key = gr.Textbox(
label="🔑 OpenAI API Key",
placeholder="sk-...",
type="password"
)
file_input = gr.File(
label="📁 Input Document (PDF)",
file_types=[".pdf"]
)
with gr.Accordion("🎛️ Synthesis Parameters", open=True):
voice_select = gr.Radio(
choices=["alloy", "echo", "fable", "onyx", "nova", "shimmer"],
value="onyx",
label="🎙️ Voice Model",
info="TTS voice model selection"
)
style_select = gr.Radio(
choices=["Technical", "Narrative", "Instructional", "Descriptive"],
value="Technical",
label="💫 Processing Style",
info="Content processing approach"
)
with gr.Accordion("⚙️ Processing Parameters", open=False):
chunk_size = gr.Slider(
minimum=100, maximum=1000, value=300, step=50,
label="📏 Chunk Size (tokens)",
info="Text segmentation size"
)
temperature = gr.Slider(
minimum=0, maximum=1, value=0.7, step=0.1,
label="🌡️ Temperature",
info="LLM randomness factor"
)
max_tokens = gr.Slider(
minimum=100, maximum=1000, value=300, step=50,
label="📊 Max Tokens",
info="Maximum output token limit"
)
process_btn = gr.Button("🚀 Process Document", variant="primary")
status_output = gr.Textbox(label="📋 Status")
with gr.Tabs():
with gr.TabItem("📝 Content Processing"):
output_table = gr.Dataframe(
headers=["🔍 Segment", "📄 Processed Content", "🎭 Audio Script"],
wrap=True
)
with gr.TabItem("🎧 Audio Output"):
audio_output = gr.Audio(
label="🔊 Synthesized Audio",
type="filepath",
show_download_button=True
)
gr.Markdown("""
### 📚 Technical Notes
- ⚡ Token limit affects processing speed and memory usage
- 🎯 Temperature values > 0.8 may introduce content variations
- 🔊 Audio synthesis has a 4096 token limit per segment
### ⚙️ Performance Considerations
- 📊 Chunk size directly impacts processing time
- 🔄 Higher temperatures increase LLM compute time
- ⏱️ Audio synthesis scales with script length
""")
gr.HTML(
"""
"""
)
def update_interface(pdf_file, api_key, voice, style, chunk_size, temperature, max_tokens):
return process_document(
pdf_file, api_key, voice, style, chunk_size, temperature, max_tokens
)
process_btn.click(
update_interface,
inputs=[
file_input, api_key, voice_select, style_select,
chunk_size, temperature, max_tokens
],
outputs=[output_table, audio_output, status_output]
)
return demo