Update app.py
Browse files
app.py
CHANGED
|
@@ -50,7 +50,6 @@ def create_prompt(top_k_list: list[dict], question: str) -> str:
|
|
| 50 |
|
| 51 |
{question}'''
|
| 52 |
|
| 53 |
-
"""Gradio Application"""
|
| 54 |
def process_files(ground_truth_file, pdf_files):
|
| 55 |
# Process ground truth file
|
| 56 |
if ground_truth_file.name.endswith('.csv'):
|
|
@@ -108,44 +107,21 @@ def process_files(ground_truth_file, pdf_files):
|
|
| 108 |
}
|
| 109 |
]
|
| 110 |
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
# Add OpenAI response column
|
| 114 |
queries_t['response'] = openai.chat_completions(
|
| 115 |
model='gpt-4-0125-preview', messages=messages
|
| 116 |
)
|
|
|
|
| 117 |
queries_t['answer'] = queries_t.response.choices[0].message.content
|
| 118 |
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
# Perform top-k lookup
|
| 122 |
-
context = chunks_t.top_k(question).collect()
|
| 123 |
-
|
| 124 |
-
# Create prompt
|
| 125 |
-
prompt = create_prompt(context, question)
|
| 126 |
-
|
| 127 |
-
# Prepare messages for OpenAI
|
| 128 |
-
messages = [
|
| 129 |
-
{
|
| 130 |
-
'role': 'system',
|
| 131 |
-
'content': 'Please read the following passages and answer the question based on their contents.'
|
| 132 |
-
},
|
| 133 |
-
{
|
| 134 |
-
'role': 'user',
|
| 135 |
-
'content': prompt
|
| 136 |
-
}
|
| 137 |
-
]
|
| 138 |
-
|
| 139 |
-
# Get LLM response
|
| 140 |
-
response = openai.chat_completions(model='gpt-4-0125-preview', messages=messages)
|
| 141 |
-
answer = response.choices[0].message.content
|
| 142 |
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
|
| 147 |
-
|
| 148 |
-
|
| 149 |
|
| 150 |
# Gradio interface
|
| 151 |
with gr.Blocks() as demo:
|
|
@@ -156,15 +132,14 @@ with gr.Blocks() as demo:
|
|
| 156 |
pdf_files = gr.File(label="Upload PDF Documents", file_count="multiple")
|
| 157 |
|
| 158 |
process_button = gr.Button("Process Files")
|
| 159 |
-
process_output = gr.Textbox(label="Processing Output")
|
| 160 |
|
| 161 |
-
|
| 162 |
-
query_button = gr.Button("Query LLM")
|
| 163 |
|
| 164 |
-
|
|
|
|
| 165 |
|
| 166 |
-
process_button.click(process_files, inputs=[ground_truth_file, pdf_files], outputs=
|
| 167 |
-
query_button.click(query_llm, inputs=question_input, outputs=output_dataframe)
|
| 168 |
|
| 169 |
if __name__ == "__main__":
|
| 170 |
demo.launch()
|
|
|
|
| 50 |
|
| 51 |
{question}'''
|
| 52 |
|
|
|
|
| 53 |
def process_files(ground_truth_file, pdf_files):
|
| 54 |
# Process ground truth file
|
| 55 |
if ground_truth_file.name.endswith('.csv'):
|
|
|
|
| 107 |
}
|
| 108 |
]
|
| 109 |
|
| 110 |
+
# Add OpenAI response column
|
|
|
|
|
|
|
| 111 |
queries_t['response'] = openai.chat_completions(
|
| 112 |
model='gpt-4-0125-preview', messages=messages
|
| 113 |
)
|
| 114 |
+
|
| 115 |
queries_t['answer'] = queries_t.response.choices[0].message.content
|
| 116 |
|
| 117 |
+
df_output = queries_t.select(queries_t.Question, queries_t.correct_answer, queries_t.answer).collect().to_pandas()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
|
| 119 |
+
try:
|
| 120 |
+
#Display content
|
| 121 |
+
return df_output
|
| 122 |
|
| 123 |
+
except Exception as e:
|
| 124 |
+
return f"An error occurred: {str(e)}", None
|
| 125 |
|
| 126 |
# Gradio interface
|
| 127 |
with gr.Blocks() as demo:
|
|
|
|
| 132 |
pdf_files = gr.File(label="Upload PDF Documents", file_count="multiple")
|
| 133 |
|
| 134 |
process_button = gr.Button("Process Files")
|
|
|
|
| 135 |
|
| 136 |
+
df_output = gr.DataFrame(label="Pixeltable Table")
|
|
|
|
| 137 |
|
| 138 |
+
#question_input = gr.Textbox(label="Enter your question")
|
| 139 |
+
#query_button = gr.Button("Query LLM")
|
| 140 |
|
| 141 |
+
process_button.click(process_files, inputs=[ground_truth_file, pdf_files], outputs=df_output)
|
| 142 |
+
#query_button.click(query_llm, inputs=question_input, outputs=output_dataframe)
|
| 143 |
|
| 144 |
if __name__ == "__main__":
|
| 145 |
demo.launch()
|