platma-retrain / src /main.py
baryshych's picture
add local autotrain
a075ab3
raw
history blame
4.35 kB
import os
import requests
from typing import Optional
import uvicorn
import subprocess
from subprocess import Popen
from fastapi import FastAPI, Header, HTTPException, BackgroundTasks
from fastapi.responses import FileResponse
from huggingface_hub.hf_api import HfApi
from models import config, WebhookPayload
app = FastAPI()
WEBHOOK_SECRET = os.getenv("WEBHOOK_SECRET")
HF_ACCESS_TOKEN = os.getenv("HF_ACCESS_TOKEN")
@app.get("/")
async def home():
return FileResponse("home.html")
@app.post("/webhook")
async def post_webhook(
payload: WebhookPayload,
task_queue: BackgroundTasks,
x_webhook_secret: Optional[str] = Header(default=None),
):
# if x_webhook_secret is None:
# raise HTTPException(401)
# if x_webhook_secret != WEBHOOK_SECRET:
# raise HTTPException(403)
# if not (
# payload.event.action == "update"
# and payload.event.scope.startswith("repo.content")
# and payload.repo.name == config.input_dataset
# and payload.repo.type == "dataset"
# ):
# # no-op
# return {"processed": False}
schedule_retrain(payload=payload)
# task_queue.add_task(
# schedule_retrain,
# payload
# )
return {"processed": True}
def schedule_retrain(payload: WebhookPayload):
# Create the autotrain project
try:
result = Popen(['autotrain', '--config', 'config.yaml'])
# project = AutoTrain.create_project(payload)
# AutoTrain.add_data(project_id=project["id"])
# AutoTrain.start_processing(project_id=project["id"])
except requests.HTTPError as err:
print("ERROR while requesting AutoTrain API:")
print(f" code: {err.response.status_code}")
print(f" {err.response.json()}")
raise
# Notify in the community tab
notify_success('vicuna')
print(result.returncode)
return {"processed": True}
class AutoTrain:
@staticmethod
def create_project(payload: WebhookPayload) -> dict:
project_resp = requests.post(
f"{AUTOTRAIN_API_URL}/api/create_project",
json={
"username": config.target_namespace,
"proj_name": f"{config.autotrain_project_prefix}-{payload.repo.headSha[:7]}",
"task": 'llm:sft', # image-multi-class-classification
"base_model": "meta-llama/Meta-Llama-3-8B-Instruct",
"train_split": "train",
"column_mapping": {
"text_column": "text",
},
"params": {
"block_size": 1024,
"model_max_length": 4096,
"max_prompt_length": 512,
"epochs": 1,
"batch_size": 2,
"lr": 0.00003,
"peft": True,
"quantization": "int4",
"target_modules": "all-linear",
"padding": "right",
"optimizer": "adamw_torch",
"scheduler": "linear",
"gradient_accumulation": 4,
"mixed_precision": "fp16",
"chat_template": "chatml"
}
},
headers={
"Authorization": f"Bearer {HF_ACCESS_TOKEN}"
}
)
project_resp.raise_for_status()
return project_resp.json()
@staticmethod
def add_data(project_id:int):
requests.post(
f"{AUTOTRAIN_API_URL}/projects/{project_id}/data/dataset",
json={
"dataset_id": config.input_dataset,
"dataset_split": "train",
"split": 4,
"col_mapping": {
"image": "image",
"label": "target",
}
},
headers={
"Authorization": f"Bearer {HF_ACCESS_TOKEN}",
}
).raise_for_status()
@staticmethod
def start_processing(project_id: int):
resp = requests.post(
f"{AUTOTRAIN_API_URL}/projects/{project_id}/data/start_processing",
headers={
"Authorization": f"Bearer {HF_ACCESS_TOKEN}",
}
)
resp.raise_for_status()
return resp
def notify_success(project_id: int):
message = NOTIFICATION_TEMPLATE.format(
input_model=config.input_model,
input_dataset=config.input_dataset,
project_id=project_id,
ui_url=AUTOTRAIN_UI_URL,
)
return HfApi(token=HF_ACCESS_TOKEN).create_discussion(
repo_id=config.input_dataset,
repo_type="dataset",
title="✨ Retraining started!",
description=message,
token=HF_ACCESS_TOKEN,
)
NOTIFICATION_TEMPLATE = """\
🌸 Hello there!
Following an update of [{input_dataset}](https://huggingface.co/datasets/{input_dataset}), an automatic re-training of [{input_model}](https://huggingface.co/{input_model}) has been scheduled on AutoTrain!
Please review and approve the project [here]({ui_url}/{project_id}/trainings) to start the training job.
(This is an automated message)
"""
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=8000)