Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
import transformers
|
| 2 |
import re
|
| 3 |
-
from transformers import AutoConfig, AutoTokenizer, AutoModel, AutoModelForCausalLM
|
| 4 |
from vllm import LLM, SamplingParams
|
| 5 |
import torch
|
| 6 |
import gradio as gr
|
|
@@ -8,34 +8,39 @@ import json
|
|
| 8 |
import os
|
| 9 |
import shutil
|
| 10 |
import requests
|
| 11 |
-
import chromadb
|
| 12 |
-
import difflib
|
| 13 |
import pandas as pd
|
| 14 |
-
|
| 15 |
-
from chromadb.utils import embedding_functions
|
| 16 |
|
| 17 |
# Define the device
|
| 18 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 19 |
|
| 20 |
-
|
|
|
|
|
|
|
| 21 |
|
| 22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
-
|
| 25 |
-
|
|
|
|
| 26 |
css = """
|
|
|
|
| 27 |
.generation {
|
| 28 |
-
margin-left:2em;
|
| 29 |
-
margin-right:2em;
|
| 30 |
-
size:1.2em;
|
| 31 |
}
|
| 32 |
:target {
|
| 33 |
background-color: #CCF3DF;
|
| 34 |
}
|
| 35 |
.source {
|
| 36 |
-
float:left;
|
| 37 |
-
max-width:17%;
|
| 38 |
-
margin-left:2%;
|
| 39 |
}
|
| 40 |
.tooltip {
|
| 41 |
position: relative;
|
|
@@ -43,7 +48,6 @@ css = """
|
|
| 43 |
font-variant-position: super;
|
| 44 |
color: #97999b;
|
| 45 |
}
|
| 46 |
-
|
| 47 |
.tooltip:hover::after {
|
| 48 |
content: attr(data-text);
|
| 49 |
position: absolute;
|
|
@@ -61,7 +65,6 @@ css = """
|
|
| 61 |
display: block;
|
| 62 |
box-shadow: 0 4px 8px rgba(0,0,0,0.1);
|
| 63 |
}
|
| 64 |
-
/* New styles for diff */
|
| 65 |
.deleted {
|
| 66 |
background-color: #ffcccb;
|
| 67 |
text-decoration: line-through;
|
|
@@ -69,75 +72,186 @@ css = """
|
|
| 69 |
.inserted {
|
| 70 |
background-color: #90EE90;
|
| 71 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
"""
|
| 73 |
|
| 74 |
-
#
|
| 75 |
def generate_html_diff(old_text, new_text):
|
| 76 |
d = difflib.Differ()
|
| 77 |
diff = list(d.compare(old_text.split(), new_text.split()))
|
| 78 |
-
|
| 79 |
html_diff = []
|
| 80 |
for word in diff:
|
| 81 |
-
if word.startswith('
|
| 82 |
html_diff.append(word[2:])
|
| 83 |
elif word.startswith('+ '):
|
| 84 |
html_diff.append(f'<span style="background-color: #90EE90;">{word[2:]}</span>')
|
| 85 |
-
# We're not adding anything for words that start with '- '
|
| 86 |
-
|
| 87 |
return ' '.join(html_diff)
|
| 88 |
|
| 89 |
-
|
| 90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
def __init__(self, system_prompt="Le dialogue suivant est une conversation"):
|
| 92 |
self.system_prompt = system_prompt
|
| 93 |
|
| 94 |
-
def
|
| 95 |
sampling_params = SamplingParams(temperature=0.9, top_p=0.95, max_tokens=4000, presence_penalty=0, stop=["#END#"])
|
| 96 |
detailed_prompt = f"### TEXT ###\n{user_message}\n\n### CORRECTION ###\n"
|
| 97 |
-
print(detailed_prompt)
|
| 98 |
prompts = [detailed_prompt]
|
| 99 |
-
outputs =
|
| 100 |
generated_text = outputs[0].outputs[0].text
|
| 101 |
-
|
| 102 |
-
# Generate HTML diff
|
| 103 |
html_diff = generate_html_diff(user_message, generated_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
|
| 105 |
-
|
| 106 |
-
return
|
| 107 |
|
| 108 |
-
# Create the
|
| 109 |
-
|
| 110 |
|
| 111 |
# Define the Gradio interface
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
]
|
| 119 |
-
]
|
| 120 |
-
|
| 121 |
-
additional_inputs=[
|
| 122 |
-
gr.Slider(
|
| 123 |
-
label="Température",
|
| 124 |
-
value=0.2, # Default value
|
| 125 |
-
minimum=0.05,
|
| 126 |
-
maximum=1.0,
|
| 127 |
-
step=0.05,
|
| 128 |
-
interactive=True,
|
| 129 |
-
info="Des valeurs plus élevées donne plus de créativité, mais aussi d'étrangeté",
|
| 130 |
-
),
|
| 131 |
-
]
|
| 132 |
-
|
| 133 |
-
demo = gr.Blocks()
|
| 134 |
-
|
| 135 |
-
with gr.Blocks(theme='JohnSmith9982/small_and_pretty', css=css) as demo:
|
| 136 |
-
gr.HTML("""<h1 style="text-align:center">Correction d'OCR</h1>""")
|
| 137 |
-
text_input = gr.Textbox(label="Votre texte.", type="text", lines=1)
|
| 138 |
-
text_button = gr.Button("Corriger l'OCR")
|
| 139 |
-
text_output = gr.HTML(label="Le texte corrigé")
|
| 140 |
-
text_button.click(mistral_bot.predict, inputs=text_input, outputs=[text_output])
|
| 141 |
|
| 142 |
if __name__ == "__main__":
|
| 143 |
demo.queue().launch()
|
|
|
|
| 1 |
import transformers
|
| 2 |
import re
|
| 3 |
+
from transformers import AutoConfig, AutoTokenizer, AutoModel, AutoModelForCausalLM, pipeline
|
| 4 |
from vllm import LLM, SamplingParams
|
| 5 |
import torch
|
| 6 |
import gradio as gr
|
|
|
|
| 8 |
import os
|
| 9 |
import shutil
|
| 10 |
import requests
|
|
|
|
|
|
|
| 11 |
import pandas as pd
|
| 12 |
+
import difflib
|
|
|
|
| 13 |
|
| 14 |
# Define the device
|
| 15 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 16 |
|
| 17 |
+
# OCR Correction Model
|
| 18 |
+
ocr_model_name = "Pclanglais/ocronos2"
|
| 19 |
+
ocr_llm = LLM(ocr_model_name, max_model_len=8128)
|
| 20 |
|
| 21 |
+
# Editorial Segmentation Model
|
| 22 |
+
editorial_model = "PleIAs/Estienne"
|
| 23 |
+
token_classifier = pipeline(
|
| 24 |
+
"token-classification", model=editorial_model, aggregation_strategy="simple", device=device
|
| 25 |
+
)
|
| 26 |
|
| 27 |
+
tokenizer = AutoTokenizer.from_pretrained(editorial_model, model_max_length=512)
|
| 28 |
+
|
| 29 |
+
# CSS for formatting
|
| 30 |
css = """
|
| 31 |
+
<style>
|
| 32 |
.generation {
|
| 33 |
+
margin-left: 2em;
|
| 34 |
+
margin-right: 2em;
|
| 35 |
+
font-size: 1.2em;
|
| 36 |
}
|
| 37 |
:target {
|
| 38 |
background-color: #CCF3DF;
|
| 39 |
}
|
| 40 |
.source {
|
| 41 |
+
float: left;
|
| 42 |
+
max-width: 17%;
|
| 43 |
+
margin-left: 2%;
|
| 44 |
}
|
| 45 |
.tooltip {
|
| 46 |
position: relative;
|
|
|
|
| 48 |
font-variant-position: super;
|
| 49 |
color: #97999b;
|
| 50 |
}
|
|
|
|
| 51 |
.tooltip:hover::after {
|
| 52 |
content: attr(data-text);
|
| 53 |
position: absolute;
|
|
|
|
| 65 |
display: block;
|
| 66 |
box-shadow: 0 4px 8px rgba(0,0,0,0.1);
|
| 67 |
}
|
|
|
|
| 68 |
.deleted {
|
| 69 |
background-color: #ffcccb;
|
| 70 |
text-decoration: line-through;
|
|
|
|
| 72 |
.inserted {
|
| 73 |
background-color: #90EE90;
|
| 74 |
}
|
| 75 |
+
.manuscript {
|
| 76 |
+
display: flex;
|
| 77 |
+
margin-bottom: 10px;
|
| 78 |
+
align-items: baseline;
|
| 79 |
+
}
|
| 80 |
+
.annotation {
|
| 81 |
+
width: 15%;
|
| 82 |
+
padding-right: 20px;
|
| 83 |
+
color: grey !important;
|
| 84 |
+
font-style: italic;
|
| 85 |
+
text-align: right;
|
| 86 |
+
}
|
| 87 |
+
.content {
|
| 88 |
+
width: 80%;
|
| 89 |
+
}
|
| 90 |
+
h2 {
|
| 91 |
+
margin: 0;
|
| 92 |
+
font-size: 1.5em;
|
| 93 |
+
}
|
| 94 |
+
.title-content h2 {
|
| 95 |
+
font-weight: bold;
|
| 96 |
+
}
|
| 97 |
+
.bibliography-content {
|
| 98 |
+
color: darkgreen !important;
|
| 99 |
+
margin-top: -5px;
|
| 100 |
+
}
|
| 101 |
+
.paratext-content {
|
| 102 |
+
color: #a4a4a4 !important;
|
| 103 |
+
margin-top: -5px;
|
| 104 |
+
}
|
| 105 |
+
</style>
|
| 106 |
"""
|
| 107 |
|
| 108 |
+
# Helper functions
|
| 109 |
def generate_html_diff(old_text, new_text):
|
| 110 |
d = difflib.Differ()
|
| 111 |
diff = list(d.compare(old_text.split(), new_text.split()))
|
|
|
|
| 112 |
html_diff = []
|
| 113 |
for word in diff:
|
| 114 |
+
if word.startswith(' '):
|
| 115 |
html_diff.append(word[2:])
|
| 116 |
elif word.startswith('+ '):
|
| 117 |
html_diff.append(f'<span style="background-color: #90EE90;">{word[2:]}</span>')
|
|
|
|
|
|
|
| 118 |
return ' '.join(html_diff)
|
| 119 |
|
| 120 |
+
def preprocess_text(text):
|
| 121 |
+
text = re.sub(r'<[^>]+>', '', text)
|
| 122 |
+
text = re.sub(r'\n', ' ', text)
|
| 123 |
+
text = re.sub(r'\s+', ' ', text)
|
| 124 |
+
return text.strip()
|
| 125 |
+
|
| 126 |
+
def split_text(text, max_tokens=500):
|
| 127 |
+
parts = text.split("\n")
|
| 128 |
+
chunks = []
|
| 129 |
+
current_chunk = ""
|
| 130 |
+
|
| 131 |
+
for part in parts:
|
| 132 |
+
if current_chunk:
|
| 133 |
+
temp_chunk = current_chunk + "\n" + part
|
| 134 |
+
else:
|
| 135 |
+
temp_chunk = part
|
| 136 |
+
|
| 137 |
+
num_tokens = len(tokenizer.tokenize(temp_chunk))
|
| 138 |
+
|
| 139 |
+
if num_tokens <= max_tokens:
|
| 140 |
+
current_chunk = temp_chunk
|
| 141 |
+
else:
|
| 142 |
+
if current_chunk:
|
| 143 |
+
chunks.append(current_chunk)
|
| 144 |
+
current_chunk = part
|
| 145 |
+
|
| 146 |
+
if current_chunk:
|
| 147 |
+
chunks.append(current_chunk)
|
| 148 |
+
|
| 149 |
+
if len(chunks) == 1 and len(tokenizer.tokenize(chunks[0])) > max_tokens:
|
| 150 |
+
long_text = chunks[0]
|
| 151 |
+
chunks = []
|
| 152 |
+
while len(tokenizer.tokenize(long_text)) > max_tokens:
|
| 153 |
+
split_point = len(long_text) // 2
|
| 154 |
+
while split_point < len(long_text) and not re.match(r'\s', long_text[split_point]):
|
| 155 |
+
split_point += 1
|
| 156 |
+
if split_point >= len(long_text):
|
| 157 |
+
split_point = len(long_text) - 1
|
| 158 |
+
chunks.append(long_text[:split_point].strip())
|
| 159 |
+
long_text = long_text[split_point:].strip()
|
| 160 |
+
if long_text:
|
| 161 |
+
chunks.append(long_text)
|
| 162 |
+
|
| 163 |
+
return chunks
|
| 164 |
+
|
| 165 |
+
def transform_chunks(marianne_segmentation):
|
| 166 |
+
marianne_segmentation = pd.DataFrame(marianne_segmentation)
|
| 167 |
+
marianne_segmentation = marianne_segmentation[marianne_segmentation['entity_group'] != 'separator']
|
| 168 |
+
marianne_segmentation['word'] = marianne_segmentation['word'].astype(str).str.replace('¶', '\n', regex=False)
|
| 169 |
+
marianne_segmentation['word'] = marianne_segmentation['word'].astype(str).apply(preprocess_text)
|
| 170 |
+
marianne_segmentation = marianne_segmentation[marianne_segmentation['word'].notna() & (marianne_segmentation['word'] != '') & (marianne_segmentation['word'] != ' ')]
|
| 171 |
+
|
| 172 |
+
html_output = []
|
| 173 |
+
for _, row in marianne_segmentation.iterrows():
|
| 174 |
+
entity_group = row['entity_group']
|
| 175 |
+
result_entity = "[" + entity_group.capitalize() + "]"
|
| 176 |
+
word = row['word']
|
| 177 |
+
|
| 178 |
+
if entity_group == 'title':
|
| 179 |
+
html_output.append(f'<div class="manuscript"><div class="annotation">{result_entity}</div><div class="content title-content"><h2>{word}</h2></div></div>')
|
| 180 |
+
elif entity_group == 'bibliography':
|
| 181 |
+
html_output.append(f'<div class="manuscript"><div class="annotation">{result_entity}</div><div class="content bibliography-content">{word}</div></div>')
|
| 182 |
+
elif entity_group == 'paratext':
|
| 183 |
+
html_output.append(f'<div class="manuscript"><div class="annotation">{result_entity}</div><div class="content paratext-content">{word}</div></div>')
|
| 184 |
+
else:
|
| 185 |
+
html_output.append(f'<div class="manuscript"><div class="annotation">{result_entity}</div><div class="content">{word}</div></div>')
|
| 186 |
+
|
| 187 |
+
final_html = '\n'.join(html_output)
|
| 188 |
+
return final_html
|
| 189 |
+
|
| 190 |
+
# OCR Correction Class
|
| 191 |
+
class OCRCorrector:
|
| 192 |
def __init__(self, system_prompt="Le dialogue suivant est une conversation"):
|
| 193 |
self.system_prompt = system_prompt
|
| 194 |
|
| 195 |
+
def correct(self, user_message):
|
| 196 |
sampling_params = SamplingParams(temperature=0.9, top_p=0.95, max_tokens=4000, presence_penalty=0, stop=["#END#"])
|
| 197 |
detailed_prompt = f"### TEXT ###\n{user_message}\n\n### CORRECTION ###\n"
|
|
|
|
| 198 |
prompts = [detailed_prompt]
|
| 199 |
+
outputs = ocr_llm.generate(prompts, sampling_params, use_tqdm=False)
|
| 200 |
generated_text = outputs[0].outputs[0].text
|
|
|
|
|
|
|
| 201 |
html_diff = generate_html_diff(user_message, generated_text)
|
| 202 |
+
return generated_text, html_diff
|
| 203 |
+
|
| 204 |
+
# Editorial Segmentation Class
|
| 205 |
+
class EditorialSegmenter:
|
| 206 |
+
def segment(self, text):
|
| 207 |
+
editorial_text = re.sub("\n", " ¶ ", text)
|
| 208 |
+
num_tokens = len(tokenizer.tokenize(editorial_text))
|
| 209 |
+
|
| 210 |
+
if num_tokens > 500:
|
| 211 |
+
batch_prompts = split_text(editorial_text, max_tokens=500)
|
| 212 |
+
else:
|
| 213 |
+
batch_prompts = [editorial_text]
|
| 214 |
+
|
| 215 |
+
out = token_classifier(batch_prompts)
|
| 216 |
+
classified_list = []
|
| 217 |
+
for classification in out:
|
| 218 |
+
df = pd.DataFrame(classification)
|
| 219 |
+
classified_list.append(df)
|
| 220 |
+
|
| 221 |
+
classified_list = pd.concat(classified_list)
|
| 222 |
+
out = transform_chunks(classified_list)
|
| 223 |
+
return out
|
| 224 |
+
|
| 225 |
+
# Combined Processing Class
|
| 226 |
+
class TextProcessor:
|
| 227 |
+
def __init__(self):
|
| 228 |
+
self.ocr_corrector = OCRCorrector()
|
| 229 |
+
self.editorial_segmenter = EditorialSegmenter()
|
| 230 |
+
|
| 231 |
+
def process(self, user_message):
|
| 232 |
+
# Step 1: OCR Correction
|
| 233 |
+
corrected_text, html_diff = self.ocr_corrector.correct(user_message)
|
| 234 |
+
|
| 235 |
+
# Step 2: Editorial Segmentation
|
| 236 |
+
segmented_text = self.editorial_segmenter.segment(corrected_text)
|
| 237 |
+
|
| 238 |
+
# Combine results
|
| 239 |
+
ocr_result = f'<h2 style="text-align:center">OCR Correction</h2>\n<div class="generation">{html_diff}</div>'
|
| 240 |
+
editorial_result = f'<h2 style="text-align:center">Editorial Segmentation</h2>\n<div class="generation">{segmented_text}</div>'
|
| 241 |
|
| 242 |
+
final_output = f"{css}{ocr_result}<br><br>{editorial_result}"
|
| 243 |
+
return final_output
|
| 244 |
|
| 245 |
+
# Create the TextProcessor instance
|
| 246 |
+
text_processor = TextProcessor()
|
| 247 |
|
| 248 |
# Define the Gradio interface
|
| 249 |
+
with gr.Blocks(theme='JohnSmith9982/small_and_pretty') as demo:
|
| 250 |
+
gr.HTML("""<h1 style="text-align:center">LM Document Processing</h1>""")
|
| 251 |
+
text_input = gr.Textbox(label="Your text", type="text", lines=5)
|
| 252 |
+
process_button = gr.Button("Process Text")
|
| 253 |
+
text_output = gr.HTML(label="Processed text")
|
| 254 |
+
process_button.click(text_processor.process, inputs=text_input, outputs=[text_output])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 255 |
|
| 256 |
if __name__ == "__main__":
|
| 257 |
demo.queue().launch()
|