productizationlabs commited on
Commit
55d0a48
·
1 Parent(s): f7a6ae3

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +16 -61
app.py CHANGED
@@ -1,64 +1,19 @@
1
- import gradio as gr
2
- import numpy as np
3
- import pandas as pd
4
- from nltk.corpus import stopwords
5
  from nltk.tokenize import word_tokenize
6
  from nltk.stem.wordnet import WordNetLemmatizer
7
- import nltk
8
-
9
- nltk.download('punkt')
10
- nltk.download('wordnet')
11
- nltk.download('stopwords')
12
-
13
- # Import the dataset
14
- df = pd.read_csv('Hotel_Reviews.csv')
15
- df['countries'] = df.Hotel_Address.apply(lambda x: x.split(' ')[-1])
16
-
17
- # Define the function to recommend hotels
18
  def Input_your_destination_and_description(location,description):
19
- # Making these columns lowercase
20
- df['countries']=df['countries'].str.lower()
21
- df['Tags']=df['Tags'].str.lower()
22
-
23
- # Dividing the texts into small tokens (sentences into words)
24
- description = description.lower()
25
- description_tokens=word_tokenize(description)
26
-
27
- sw = stopwords.words('english') # List of predefined english stopwords to be used for computing
28
- lemm = WordNetLemmatizer() # We now define the functions below connecting these imported packages
29
- filtered_sen = {w for w in description_tokens if not w in sw}
30
- f_set=set()
31
- for fs in filtered_sen:
32
- f_set.add(lemm.lemmatize(fs))
33
-
34
- # Defining a new variable that takes in the location inputted and bring out the features defined below
35
- country_feat = df[df['countries']==location.lower()]
36
- country_feat = country_feat.set_index(np.arange(country_feat.shape[0]))
37
- cos=[];
38
- for i in range(country_feat.shape[0]):
39
- temp_tokens=word_tokenize(country_feat['Tags'][i])
40
- temp1_set={w for w in temp_tokens if not w in sw}
41
- temp_set=set()
42
- for se in temp1_set:
43
- temp_set.add(lemm.lemmatize(se))
44
- rvector = temp_set.intersection(f_set)
45
- cos.append(len(rvector))
46
- country_feat['similarity']=cos
47
- country_feat=country_feat.sort_values(by='similarity',ascending=False)
48
- country_feat.drop_duplicates(subset='Hotel_Name',keep='first',inplace=True)
49
- country_feat.sort_values('Average_Score',ascending=False,inplace=True)
50
- country_feat.reset_index(inplace=True)
51
- return country_feat[['Hotel_Name','Average_Score','Hotel_Address']].head(10)
52
-
53
- # Create the input interface
54
- inputs = [gr.inputs.Textbox(label="Location"),
55
- gr.inputs.Textbox(label="Purpose of Travel")]
56
-
57
- # Create the output interface
58
- outputs=gr.outputs.Dataframe(label="Hotel Recommendations",type="pandas")
59
-
60
- # Create the interface
61
- gr.Interface(fn=Input_your_destination_and_description,
62
- inputs=inputs,
63
- outputs=outputs,theme=gr.themes.Default(primary_hue="slate")).launch()
64
-
 
1
+ _A='countries'
2
+ import gradio as gr,numpy as np,pandas as pd
3
+ from nltk.corpus import stopwords
 
4
  from nltk.tokenize import word_tokenize
5
  from nltk.stem.wordnet import WordNetLemmatizer
6
+ df=pd.read_csv('Hotel_Reviews.csv')
7
+ df[_A]=df.Hotel_Address.apply(lambda x:x.split(' ')[-1])
 
 
 
 
 
 
 
 
 
8
  def Input_your_destination_and_description(location,description):
9
+ M='Average_Score';L='Hotel_Name';K=False;J='similarity';D=True;C='Tags';B=description;df[_A]=df[_A].str.lower();df[C]=df[C].str.lower();B=B.lower();N=word_tokenize(B);E=stopwords.words('english');F=WordNetLemmatizer();O={A for A in N if not A in E};G=set()
10
+ for P in O:G.add(F.lemmatize(P))
11
+ A=df[df[_A]==location.lower()];A=A.set_index(np.arange(A.shape[0]));H=[]
12
+ for Q in range(A.shape[0]):
13
+ R=word_tokenize(A[C][Q]);S={A for A in R if not A in E};I=set()
14
+ for T in S:I.add(F.lemmatize(T))
15
+ U=I.intersection(G);H.append(len(U))
16
+ A[J]=H;A=A.sort_values(by=J,ascending=K);A.drop_duplicates(subset=L,keep='first',inplace=D);A.sort_values(M,ascending=K,inplace=D);A.reset_index(inplace=D);return A[[L,M,'Hotel_Address']].head(10)
17
+ inputs=[gr.inputs.Textbox(label='Location'),gr.inputs.Textbox(label='Purpose of Travel')]
18
+ outputs=gr.outputs.Dataframe(label='Hotel Recommendations',type='pandas')
19
+ gr.Interface(fn=Input_your_destination_and_description,inputs=inputs,outputs=outputs,theme=gr.themes.Default(primary_hue='slate')).launch()