Gopala Krishna commited on
Commit
ff26c0e
·
1 Parent(s): 8cb45d3

Working Clean

Browse files
.vs/UBCFProductRecommendations/FileContentIndex/52856ff2-fe43-4178-af57-cb76a26a0459.vsidx ADDED
Binary file (11.7 kB). View file
 
.vs/UBCFProductRecommendations/FileContentIndex/7ff40909-b5d8-4c88-8906-d6cc681c52b1.vsidx DELETED
Binary file (11.7 kB)
 
.vs/UBCFProductRecommendations/v17/.wsuo CHANGED
Binary files a/.vs/UBCFProductRecommendations/v17/.wsuo and b/.vs/UBCFProductRecommendations/v17/.wsuo differ
 
app.py CHANGED
@@ -2,7 +2,7 @@ import pandas as pd
2
  from sklearn.metrics.pairwise import cosine_similarity
3
  import gradio as gr
4
 
5
- def recommend_items(file, customer_id_1, customer_id_2):
6
  # Read data source Excel file.
7
  df1 = pd.read_excel("UBCF_Online_Retail.xlsx")
8
  df1a = df1.dropna(subset=['CustomerID'])
@@ -49,13 +49,10 @@ def recommend_items(file, customer_id_1, customer_id_2):
49
  iface = gr.Interface(
50
  fn=recommend_items,
51
  inputs=[
52
- gr.inputs.File(label="Excel file (.xlsx)"),
53
- gr.inputs.Number(label="Customer ID 1"),
54
- gr.inputs.Number(label="Customer ID 2"),
55
  ],
56
  outputs="dataframe",
57
- title="Item Recommendation System",
58
- description="This system recommends items for a customer based on another customer's purchase history.",
59
  allow_flagging=False
60
  )
61
 
 
2
  from sklearn.metrics.pairwise import cosine_similarity
3
  import gradio as gr
4
 
5
+ def recommend_items(customer_id_1, customer_id_2):
6
  # Read data source Excel file.
7
  df1 = pd.read_excel("UBCF_Online_Retail.xlsx")
8
  df1a = df1.dropna(subset=['CustomerID'])
 
49
  iface = gr.Interface(
50
  fn=recommend_items,
51
  inputs=[
52
+ gr.inputs.Number(label="Customer ID 1",default=12702),
53
+ gr.inputs.Number(label="Customer ID 2",default=14608),
 
54
  ],
55
  outputs="dataframe",
 
 
56
  allow_flagging=False
57
  )
58