PostNetworkAcademy commited on
Commit
120cd67
·
verified ·
1 Parent(s): c73d3ad

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +34 -51
app.py CHANGED
@@ -1,64 +1,47 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("PostNetworkAcademy/gpt2-robotics-PostNetworkAcademy")
8
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
  temperature=temperature,
35
  top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
  ],
 
 
 
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
  demo.launch()
 
1
  import gradio as gr
2
+ from transformers import AutoTokenizer, AutoModelForCausalLM
3
+ import torch
4
 
5
+ model_name = "PostNetworkAcademy/gpt2-robotics-PostNetworkAcademy"
 
 
 
6
 
7
+ # Load tokenizer & model
8
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
9
+ model = AutoModelForCausalLM.from_pretrained(model_name)
10
 
11
+ # Ensure tokens exist
12
+ if tokenizer.pad_token is None:
13
+ tokenizer.pad_token = tokenizer.eos_token or "<|endoftext|>"
 
 
 
 
 
 
14
 
15
+ # Force model to CPU (avoids device mismatch)
16
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
17
+ model = model.to(device)
 
 
18
 
19
+ def generate_text(prompt, max_length=100, temperature=0.7, top_p=0.9):
20
+ inputs = tokenizer(prompt, return_tensors="pt").to(device)
21
+ outputs = model.generate(
22
+ **inputs,
23
+ max_length=max_length,
 
 
 
24
  temperature=temperature,
25
  top_p=top_p,
26
+ do_sample=True,
27
+ pad_token_id=tokenizer.pad_token_id,
28
+ eos_token_id=tokenizer.eos_token_id
29
+ )
30
+ return tokenizer.decode(outputs[0], skip_special_tokens=True)
31
+
32
+ # Gradio UI
33
+ demo = gr.Interface(
34
+ fn=generate_text,
35
+ inputs=[
36
+ gr.Textbox(lines=4, placeholder="Enter your robotics prompt...", label="Prompt"),
37
+ gr.Slider(20, 500, value=100, step=10, label="Max Length"),
38
+ gr.Slider(0.1, 1.5, value=0.7, step=0.1, label="Temperature"),
39
+ gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top-p"),
 
 
 
 
 
 
 
 
 
40
  ],
41
+ outputs=gr.Textbox(label="Generated Response"),
42
+ title="GPT-2 Robotics - PostNetworkAcademy",
43
+ description="Fine-tuned GPT-2 model for robotics."
44
  )
45
 
 
46
  if __name__ == "__main__":
47
  demo.launch()