Spaces:
Build error
Build error
| # code adapted from: https://github.com/Stability-AI/stable-audio-tools | |
| import torch | |
| import torch.nn as nn | |
| from torch import Tensor, einsum | |
| from typing import Any, Callable, Dict, List, Optional, Sequence, Tuple, TypeVar, Union | |
| from einops import rearrange | |
| import math | |
| import comfy.ops | |
| class LearnedPositionalEmbedding(nn.Module): | |
| """Used for continuous time""" | |
| def __init__(self, dim: int): | |
| super().__init__() | |
| assert (dim % 2) == 0 | |
| half_dim = dim // 2 | |
| self.weights = nn.Parameter(torch.empty(half_dim)) | |
| def forward(self, x: Tensor) -> Tensor: | |
| x = rearrange(x, "b -> b 1") | |
| freqs = x * rearrange(self.weights, "d -> 1 d") * 2 * math.pi | |
| fouriered = torch.cat((freqs.sin(), freqs.cos()), dim=-1) | |
| fouriered = torch.cat((x, fouriered), dim=-1) | |
| return fouriered | |
| def TimePositionalEmbedding(dim: int, out_features: int) -> nn.Module: | |
| return nn.Sequential( | |
| LearnedPositionalEmbedding(dim), | |
| comfy.ops.manual_cast.Linear(in_features=dim + 1, out_features=out_features), | |
| ) | |
| class NumberEmbedder(nn.Module): | |
| def __init__( | |
| self, | |
| features: int, | |
| dim: int = 256, | |
| ): | |
| super().__init__() | |
| self.features = features | |
| self.embedding = TimePositionalEmbedding(dim=dim, out_features=features) | |
| def forward(self, x: Union[List[float], Tensor]) -> Tensor: | |
| if not torch.is_tensor(x): | |
| device = next(self.embedding.parameters()).device | |
| x = torch.tensor(x, device=device) | |
| assert isinstance(x, Tensor) | |
| shape = x.shape | |
| x = rearrange(x, "... -> (...)") | |
| embedding = self.embedding(x) | |
| x = embedding.view(*shape, self.features) | |
| return x # type: ignore | |
| class Conditioner(nn.Module): | |
| def __init__( | |
| self, | |
| dim: int, | |
| output_dim: int, | |
| project_out: bool = False | |
| ): | |
| super().__init__() | |
| self.dim = dim | |
| self.output_dim = output_dim | |
| self.proj_out = nn.Linear(dim, output_dim) if (dim != output_dim or project_out) else nn.Identity() | |
| def forward(self, x): | |
| raise NotImplementedError() | |
| class NumberConditioner(Conditioner): | |
| ''' | |
| Conditioner that takes a list of floats, normalizes them for a given range, and returns a list of embeddings | |
| ''' | |
| def __init__(self, | |
| output_dim: int, | |
| min_val: float=0, | |
| max_val: float=1 | |
| ): | |
| super().__init__(output_dim, output_dim) | |
| self.min_val = min_val | |
| self.max_val = max_val | |
| self.embedder = NumberEmbedder(features=output_dim) | |
| def forward(self, floats, device=None): | |
| # Cast the inputs to floats | |
| floats = [float(x) for x in floats] | |
| if device is None: | |
| device = next(self.embedder.parameters()).device | |
| floats = torch.tensor(floats).to(device) | |
| floats = floats.clamp(self.min_val, self.max_val) | |
| normalized_floats = (floats - self.min_val) / (self.max_val - self.min_val) | |
| # Cast floats to same type as embedder | |
| embedder_dtype = next(self.embedder.parameters()).dtype | |
| normalized_floats = normalized_floats.to(embedder_dtype) | |
| float_embeds = self.embedder(normalized_floats).unsqueeze(1) | |
| return [float_embeds, torch.ones(float_embeds.shape[0], 1).to(device)] | |