Upload 3 files
Browse files- app.py +65 -0
- requirements.txt +7 -0
- sam_hq_vit_h.pth +3 -0
app.py
ADDED
|
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import numpy as np
|
| 3 |
+
import random
|
| 4 |
+
import time
|
| 5 |
+
import json
|
| 6 |
+
import os
|
| 7 |
+
from loguru import logger
|
| 8 |
+
from decouple import config
|
| 9 |
+
import io
|
| 10 |
+
import torch
|
| 11 |
+
import numpy as np
|
| 12 |
+
import torch
|
| 13 |
+
import cv2
|
| 14 |
+
from PIL import Image
|
| 15 |
+
|
| 16 |
+
from segment_anything import sam_model_registry, SamPredictor
|
| 17 |
+
|
| 18 |
+
import spaces
|
| 19 |
+
|
| 20 |
+
print(f"Is CUDA available: {torch.cuda.is_available()}")
|
| 21 |
+
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
|
| 22 |
+
print(torch.version.cuda)
|
| 23 |
+
device = torch.cuda.get_device_name(torch.cuda.current_device())
|
| 24 |
+
print(device)
|
| 25 |
+
|
| 26 |
+
sam_checkpoint = "sam-hq/models/sam_hq_vit_h.pth"
|
| 27 |
+
model_type = "vit_h"
|
| 28 |
+
device = "cuda"
|
| 29 |
+
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
|
| 30 |
+
sam.to(device=device)
|
| 31 |
+
predictor = SamPredictor(sam)
|
| 32 |
+
|
| 33 |
+
@spaces.GPU(duration=5)
|
| 34 |
+
def generate_image(prompt, image):
|
| 35 |
+
predictor.set_image(image)
|
| 36 |
+
|
| 37 |
+
prompt = json.loads(prompt)
|
| 38 |
+
input_points = np.array(prompt['input_points'])
|
| 39 |
+
input_labels = np.array(prompt['input_labels'])
|
| 40 |
+
|
| 41 |
+
mask, _, _ = predictor.predict(
|
| 42 |
+
point_coords=input_points,
|
| 43 |
+
point_labels=input_labels,
|
| 44 |
+
box=None,
|
| 45 |
+
multimask_output=False,
|
| 46 |
+
hq_token_only=True,
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
+
rgb_array = np.zeros((mask.shape[1], mask.shape[2], 3), dtype=np.uint8)
|
| 50 |
+
rgb_array[mask[0]] = 255
|
| 51 |
+
result = Image.fromarray(rgb_array)
|
| 52 |
+
|
| 53 |
+
return result
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
if __name__ == "__main__":
|
| 57 |
+
demo = gr.Interface(fn=generate_image, inputs=[
|
| 58 |
+
"text",
|
| 59 |
+
gr.Image(image_mode='RGB', type="numpy")
|
| 60 |
+
],
|
| 61 |
+
outputs=[
|
| 62 |
+
gr.Image(type="numpy", image_mode='RGB')
|
| 63 |
+
])
|
| 64 |
+
demo.launch(debug=True)
|
| 65 |
+
logger.debug('demo.launch()')
|
requirements.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
segment-anything-hq
|
| 2 |
+
python-decouple==3.8
|
| 3 |
+
torch
|
| 4 |
+
torchaudio
|
| 5 |
+
torchsde
|
| 6 |
+
torchvision
|
| 7 |
+
loguru==0.7.2
|
sam_hq_vit_h.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a7ac14a085326d9fa6199c8c698c4f0e7280afdbb974d2c4660ec60877b45e35
|
| 3 |
+
size 2570940653
|