Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,23 +1,270 @@
|
|
1 |
-
import os
|
2 |
import gradio as gr
|
3 |
-
import requests
|
4 |
-
import inspect
|
5 |
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
# (Keep Constants as is)
|
8 |
# --- Constants ---
|
9 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
10 |
|
11 |
# --- Basic Agent Definition ---
|
12 |
-
# ----- THIS IS
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
23 |
"""
|
@@ -40,11 +287,16 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
40 |
|
41 |
# 1. Instantiate Agent ( modify this part to create your agent)
|
42 |
try:
|
43 |
-
agent =
|
|
|
|
|
|
|
|
|
|
|
44 |
except Exception as e:
|
45 |
print(f"Error instantiating agent: {e}")
|
46 |
return f"Error initializing agent: {e}", None
|
47 |
-
# In the case of an app running as a hugging Face space, this link points toward your codebase (
|
48 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
49 |
print(agent_code)
|
50 |
|
@@ -76,11 +328,46 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
76 |
for item in questions_data:
|
77 |
task_id = item.get("task_id")
|
78 |
question_text = item.get("question")
|
|
|
79 |
if not task_id or question_text is None:
|
80 |
print(f"Skipping item with missing task_id or question: {item}")
|
81 |
continue
|
82 |
try:
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
85 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
86 |
except Exception as e:
|
@@ -146,11 +433,9 @@ with gr.Blocks() as demo:
|
|
146 |
gr.Markdown(
|
147 |
"""
|
148 |
**Instructions:**
|
149 |
-
|
150 |
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
151 |
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
152 |
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
153 |
-
|
154 |
---
|
155 |
**Disclaimers:**
|
156 |
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
import pandas as pd
|
3 |
+
from smolagents import CodeAgent, OpenAIServerModel, tool
|
4 |
+
import os, subprocess
|
5 |
+
from bs4 import BeautifulSoup
|
6 |
+
from duckduckgo_search import DDGS
|
7 |
+
import csv
|
8 |
+
import json
|
9 |
+
import requests
|
10 |
+
import whisper
|
11 |
+
from typing import Optional
|
12 |
+
import openpyxl
|
13 |
|
14 |
# (Keep Constants as is)
|
15 |
# --- Constants ---
|
16 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
17 |
|
18 |
# --- Basic Agent Definition ---
|
19 |
+
# ----- THIS IS WHERE YOU CAN BUILD WHAT YOU WANT ------
|
20 |
+
def download_file(file_name: str) -> None:
|
21 |
+
if not os.path.exists(file_name):
|
22 |
+
url = f"{DEFAULT_API_URL}/files/{file_name.split('.')[0]}"
|
23 |
+
r = requests.get(url)
|
24 |
+
with open(file_name, "wb") as f:
|
25 |
+
f.write(r.content)
|
26 |
+
|
27 |
+
@tool
|
28 |
+
def open_file_as_text(file_name: str, filetype: Optional[str] = "txt") -> str:
|
29 |
+
"""
|
30 |
+
Opens a file and returns its content as readable text.
|
31 |
+
Supports 'txt', 'json', 'csv', 'xlsx', and 'mp3' (transcribes speech to text).
|
32 |
+
Args:
|
33 |
+
file_name (str): The path or name of the file.
|
34 |
+
filetype (Optional[str]): Type of file ('txt', 'json', 'csv', 'xlsx', 'mp3'). Defaults to 'txt'.
|
35 |
+
Returns:
|
36 |
+
str: The content of the file as text, or transcribed speech if 'mp3'.
|
37 |
+
"""
|
38 |
+
download_file(file_name)
|
39 |
+
try:
|
40 |
+
if filetype == "txt":
|
41 |
+
with open(file_name, "r", encoding="utf-8") as f:
|
42 |
+
return f.read()
|
43 |
+
|
44 |
+
elif filetype == "json":
|
45 |
+
with open(file_name, "r", encoding="utf-8") as f:
|
46 |
+
data = json.load(f)
|
47 |
+
return json.dumps(data, indent=2)
|
48 |
+
|
49 |
+
elif filetype == "csv":
|
50 |
+
with open(file_name, "r", encoding="utf-8") as f:
|
51 |
+
reader = csv.reader(f)
|
52 |
+
rows = list(reader)
|
53 |
+
return "\n".join([", ".join(row) for row in rows])
|
54 |
+
|
55 |
+
elif filetype == "xlsx":
|
56 |
+
wb = openpyxl.load_workbook(file_name, data_only=True)
|
57 |
+
sheet = wb.active
|
58 |
+
content = []
|
59 |
+
for row in sheet.iter_rows(values_only=True):
|
60 |
+
content.append(", ".join(str(cell) if cell is not None else "" for cell in row))
|
61 |
+
return "\n".join(content)
|
62 |
+
|
63 |
+
elif filetype == "mp3":
|
64 |
+
w = whisper.load_model("base")
|
65 |
+
res = w.transcribe(file_name)
|
66 |
+
return res["text"]
|
67 |
+
|
68 |
+
else:
|
69 |
+
return f"Unsupported filetype '{filetype}'. Supported types are 'txt', 'json', 'csv', 'xlsx', and 'mp3'."
|
70 |
+
|
71 |
+
except FileNotFoundError:
|
72 |
+
return f"File '{file_name}' not found."
|
73 |
+
except Exception as e:
|
74 |
+
return f"Error opening file '{file_name}': {str(e)}"
|
75 |
+
|
76 |
+
@tool
|
77 |
+
def web_search(query: str) -> str:
|
78 |
+
"""
|
79 |
+
Searches the web using DuckDuckGo and returns top search snippets.
|
80 |
+
Args:
|
81 |
+
query (str): The search query string.
|
82 |
+
Returns:
|
83 |
+
str: A list of top search results with title, snippet, and URL.
|
84 |
+
"""
|
85 |
+
try:
|
86 |
+
with DDGS() as ddgs:
|
87 |
+
results = ddgs.text(query, max_results=3)
|
88 |
+
if not results:
|
89 |
+
return "No results found."
|
90 |
+
return "\n\n".join([f"Title: {r['title']}\nSnippet: {r['body']}\nURL: {r['href']}" for r in results])
|
91 |
+
except Exception as e:
|
92 |
+
return f"Error during search: {str(e)}"
|
93 |
+
|
94 |
+
def parse_wikipedia_table(table) -> str:
|
95 |
+
"""
|
96 |
+
Parses a Wikipedia table into a clean, readable text format.
|
97 |
+
Args:
|
98 |
+
table (Tag): BeautifulSoup Tag for the table.
|
99 |
+
Returns:
|
100 |
+
str: Formatted table as readable text.
|
101 |
+
"""
|
102 |
+
rows = []
|
103 |
+
headers = []
|
104 |
+
|
105 |
+
# Try to get headers
|
106 |
+
thead = table.find('thead')
|
107 |
+
if thead:
|
108 |
+
for th in thead.find_all('th'):
|
109 |
+
header_text = th.get_text(separator=" ", strip=True)
|
110 |
+
headers.append(header_text)
|
111 |
+
if headers:
|
112 |
+
rows.append(" | ".join(headers))
|
113 |
+
|
114 |
+
# Parse table body rows
|
115 |
+
tbody = table.find('tbody')
|
116 |
+
if not tbody:
|
117 |
+
tbody = table # fallback: some tables have no tbody explicitly
|
118 |
+
|
119 |
+
for tr in tbody.find_all('tr'):
|
120 |
+
cells = tr.find_all(['th', 'td'])
|
121 |
+
cell_texts = []
|
122 |
+
for cell in cells:
|
123 |
+
# Clean references like [7], [note 1], etc.
|
124 |
+
for sup in cell.find_all('sup', class_='reference'):
|
125 |
+
sup.decompose()
|
126 |
+
|
127 |
+
text = cell.get_text(separator=" ", strip=True)
|
128 |
+
cell_texts.append(text)
|
129 |
+
|
130 |
+
if cell_texts:
|
131 |
+
row_text = " | ".join(cell_texts)
|
132 |
+
rows.append(row_text)
|
133 |
+
|
134 |
+
return "\n".join(rows)
|
135 |
+
|
136 |
+
@tool
|
137 |
+
def read_wikipedia_page(url: str) -> str:
|
138 |
+
"""
|
139 |
+
Fetches a Wikipedia article and extracts clean sectioned text around the relevant query.
|
140 |
+
Args:
|
141 |
+
url (str): The Wikipedia page URL.
|
142 |
+
Returns:
|
143 |
+
str: Sectioned and readable snippet focused around the query.
|
144 |
+
"""
|
145 |
+
headers = {
|
146 |
+
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/115.0.0.0 Safari/537.36"
|
147 |
+
}
|
148 |
+
resp = requests.get(url, headers=headers, timeout=10)
|
149 |
+
resp.raise_for_status()
|
150 |
+
soup = BeautifulSoup(resp.text, "html.parser")
|
151 |
+
|
152 |
+
content_div = soup.find('div', id='mw-content-text')
|
153 |
+
if not content_div:
|
154 |
+
return "Content not found."
|
155 |
+
|
156 |
+
parts = []
|
157 |
+
for elem in content_div.find_all(['h2', 'h3', 'p', 'ul', 'ol', 'table']):
|
158 |
+
if elem.name in ['h2', 'h3']:
|
159 |
+
parts.append("\n\n" + elem.get_text(strip=True) + "\n")
|
160 |
+
elif elem.name in ['p', 'ul', 'ol']:
|
161 |
+
parts.append(elem.get_text(strip=True))
|
162 |
+
elif elem.name == 'table':
|
163 |
+
parts.append(parse_wikipedia_table(elem))
|
164 |
+
|
165 |
+
full_text = "\n".join(parts)
|
166 |
+
|
167 |
+
return full_text
|
168 |
+
|
169 |
+
@tool
|
170 |
+
def smart_paginate_around_query(full_text: str, query: str) -> list:
|
171 |
+
"""
|
172 |
+
Splits text into windows around each occurrence of the query.
|
173 |
+
Args:
|
174 |
+
full_text (str): The full text to search within.
|
175 |
+
query (str): The search query.
|
176 |
+
Returns:
|
177 |
+
list: List of relevant text windows (pages).
|
178 |
+
"""
|
179 |
+
before_chars = 1000
|
180 |
+
after_chars = 3000
|
181 |
+
full_text_lower = full_text.lower()
|
182 |
+
query_lower = query.lower()
|
183 |
+
query_len = len(query_lower)
|
184 |
+
|
185 |
+
pages = []
|
186 |
+
search_pos = 0
|
187 |
+
text_len = len(full_text)
|
188 |
+
|
189 |
+
while True:
|
190 |
+
match_pos = full_text_lower.find(query_lower, search_pos)
|
191 |
+
|
192 |
+
if match_pos == -1:
|
193 |
+
break # no more matches
|
194 |
+
|
195 |
+
# Define window around match
|
196 |
+
start = max(0, match_pos - before_chars)
|
197 |
+
end = min(text_len, match_pos + query_len + after_chars)
|
198 |
+
|
199 |
+
page = full_text[start:end]
|
200 |
+
pages.append(page)
|
201 |
+
|
202 |
+
# Move search pointer to AFTER current window
|
203 |
+
search_pos = end
|
204 |
+
|
205 |
+
return pages
|
206 |
+
|
207 |
+
@tool
|
208 |
+
def reverse_sentence(text: str) -> str:
|
209 |
+
"""
|
210 |
+
Reverses the input text.
|
211 |
+
Args:
|
212 |
+
text (str): The input string to be reversed.
|
213 |
+
Returns:
|
214 |
+
str: The reversed string.
|
215 |
+
"""
|
216 |
+
return text[::-1]
|
217 |
+
|
218 |
+
@tool
|
219 |
+
def run_python_code(file_name: str) -> str:
|
220 |
+
"""
|
221 |
+
Executes a Python file and returns its printed final output.
|
222 |
+
Args:
|
223 |
+
file_name (str): Name of the Python file.
|
224 |
+
Returns:
|
225 |
+
str: The final printed output.
|
226 |
+
"""
|
227 |
+
download_file(file_name)
|
228 |
+
|
229 |
+
try:
|
230 |
+
# Run in subprocess with timeout
|
231 |
+
result = subprocess.run(
|
232 |
+
["python", file_name],
|
233 |
+
capture_output=True,
|
234 |
+
text=True,
|
235 |
+
timeout=10 # seconds
|
236 |
+
)
|
237 |
+
|
238 |
+
if result.returncode != 0:
|
239 |
+
return f"Error running code: {result.stderr.strip()}"
|
240 |
+
|
241 |
+
output = result.stdout.strip()
|
242 |
+
return output
|
243 |
+
|
244 |
+
except subprocess.TimeoutExpired:
|
245 |
+
return "Execution timed out."
|
246 |
+
except Exception as e:
|
247 |
+
return f"Error: {str(e)}"
|
248 |
+
|
249 |
+
tools = [
|
250 |
+
open_file_as_text,
|
251 |
+
web_search,
|
252 |
+
read_wikipedia_page,
|
253 |
+
smart_paginate_around_query,
|
254 |
+
reverse_sentence,
|
255 |
+
]
|
256 |
+
|
257 |
+
model = OpenAIServerModel(
|
258 |
+
model_id="gpt-4o",
|
259 |
+
api_key=os.getenv("OPENAI_API_KEY"),
|
260 |
+
temperature=0
|
261 |
+
)
|
262 |
+
|
263 |
+
agent = CodeAgent(
|
264 |
+
model=model,
|
265 |
+
tools=tools,
|
266 |
+
additional_authorized_imports=["pandas", "numpy", "datetime", "json", "re", "math", "os", "requests", "csv", "urllib"]
|
267 |
+
)
|
268 |
|
269 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
270 |
"""
|
|
|
287 |
|
288 |
# 1. Instantiate Agent ( modify this part to create your agent)
|
289 |
try:
|
290 |
+
agent = CodeAgent(
|
291 |
+
model=model,
|
292 |
+
tools=tools,
|
293 |
+
additional_authorized_imports=["pandas", "numpy", "datetime", "json", "re", "math", "os", "requests", "csv",
|
294 |
+
"urllib"]
|
295 |
+
)
|
296 |
except Exception as e:
|
297 |
print(f"Error instantiating agent: {e}")
|
298 |
return f"Error initializing agent: {e}", None
|
299 |
+
# In the case of an app running as a hugging Face space, this link points toward your codebase (useful for others so please keep it public)
|
300 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
301 |
print(agent_code)
|
302 |
|
|
|
328 |
for item in questions_data:
|
329 |
task_id = item.get("task_id")
|
330 |
question_text = item.get("question")
|
331 |
+
file_name = item.get("file_name")
|
332 |
if not task_id or question_text is None:
|
333 |
print(f"Skipping item with missing task_id or question: {item}")
|
334 |
continue
|
335 |
try:
|
336 |
+
full_prompt = f"""You are a highly precise answering agent.
|
337 |
+
When given a question:
|
338 |
+
- If necessary, perform a web search using the tool `web_search` to find possible sources of information.
|
339 |
+
- If the web search only returns titles and short snippets, you MUST visit the actual webpage to read the full content before answering.
|
340 |
+
- Use the `read_wikipedia_page` tool to fetch and read the Wikipedia page when necessary.
|
341 |
+
- You just have the ability to read Wikipedia pages only.
|
342 |
+
- You MUST paginate the content using `smart_paginate_around_query`.
|
343 |
+
- When using `smart_paginate_around_query`, you must select a short, general query based on the main keywords only. Avoid using full questions or long phrases. Use 1–3 essential words.
|
344 |
+
- If the task requires reversing the order of words, letters, phrases, or any text, you must use the `reverse_sentence` tool to perform the operation.
|
345 |
+
- Never reverse text manually inside your code. Always call the tool instead.
|
346 |
+
- If the task requires reading, listening, or analyzing a file, you must use the file specified in the `file_name` field of the task metadata, not the file name mentioned casually inside the question text.
|
347 |
+
- Comma separated lists MUST contain a single space after each comma.
|
348 |
+
- If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise.
|
349 |
+
- If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise.
|
350 |
+
- If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
|
351 |
+
- Only answer after you have gathered enough information by reading the actual page contents.
|
352 |
+
- Once you have the final answer, you must call `final_answer("your_answer")` immediately after printing it.
|
353 |
+
- Do not retry or execute anything else after calling `final_answer`.
|
354 |
+
- `final_answer` must wrap the exact printed value.
|
355 |
+
Provide ONLY the precise answer requested.
|
356 |
+
Do not include explanations, steps, reasoning, or additional text.
|
357 |
+
Be direct and specific. GAIA benchmark requires exact matching answers.
|
358 |
+
Example: if asked "What is the capital of France?", respond exactly:
|
359 |
+
Thoughts: I need to retrieve the capital of France from Wikipedia and output it directly.
|
360 |
+
Code:
|
361 |
+
```py
|
362 |
+
print("Paris")
|
363 |
+
```<end_code>
|
364 |
+
Based on the above guidelines, answer the following question:
|
365 |
+
--begin of question--
|
366 |
+
{question_text}
|
367 |
+
--end of question--
|
368 |
+
If the questions mentions the need to use a file, use the following `file_name` value as the `file_name` parameter in any function calls:
|
369 |
+
file_name: {file_name}"""
|
370 |
+
submitted_answer = agent.run(full_prompt)
|
371 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
372 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
373 |
except Exception as e:
|
|
|
433 |
gr.Markdown(
|
434 |
"""
|
435 |
**Instructions:**
|
|
|
436 |
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
437 |
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
438 |
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
|
|
439 |
---
|
440 |
**Disclaimers:**
|
441 |
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|