Context_info / app.py
Pracheethaa's picture
Create app.py
6c8edd7 verified
raw
history blame
3.44 kB
import gradio as gr
from transformers import pipeline
from langdetect import detect
import requests
import wikipedia
# Load multilingual NER model
ner_pipeline = pipeline("ner", model="Davlan/xlm-roberta-base-ner-hrl", grouped_entities=True)
# Translation models cache
translation_models = {}
# Get Wikidata entity info via SPARQL
def get_wikidata_info(entity, lang="en"):
query = f'''
SELECT ?item ?itemLabel ?itemDescription WHERE {{
?item rdfs:label "{entity}"@{lang}.
SERVICE wikibase:label {{ bd:serviceParam wikibase:language "{lang}". }}
}} LIMIT 1
'''
url = "https://query.wikidata.org/sparql"
headers = {"Accept": "application/sparql-results+json"}
try:
response = requests.get(url, params={"query": query}, headers=headers)
data = response.json()
if data['results']['bindings']:
item = data['results']['bindings'][0]
label = item.get('itemLabel', {}).get('value', entity)
description = item.get('itemDescription', {}).get('value', '')
return label, description
except:
pass
return entity, ""
# Get Wikipedia description as fallback
def get_wikipedia_summary(entity, lang="en"):
try:
wikipedia.set_lang(lang)
summary = wikipedia.summary(entity, sentences=2, auto_suggest=True, redirect=True)
return summary
except:
return "No description available."
# Translate text using MarianMT models
def translate_text(text, src_lang, tgt_lang):
if src_lang == tgt_lang:
return text
model_name = f"Helsinki-NLP/opus-mt-{src_lang}-{tgt_lang}"
try:
if model_name not in translation_models:
translation_models[model_name] = pipeline("translation", model=model_name)
translator = translation_models[model_name]
return translator(text, max_length=256)[0]['translation_text']
except:
return text # Return untranslated if model fails
# Combined NER + Wikidata + fallback Wikipedia + translation
def multilingual_entity_info(text, output_lang):
try:
detected_lang = detect(text)
except:
detected_lang = "en"
entities = ner_pipeline(text)
seen = set()
result = f"**🌐 Detected Language:** `{detected_lang}`\n**🌍 Output Language:** `{output_lang}`\n\n"
for ent in entities:
name = ent['word'].strip()
if name not in seen and name.isalpha():
seen.add(name)
label, desc = get_wikidata_info(name, lang=detected_lang)
if not desc:
desc = get_wikipedia_summary(name, lang=detected_lang)
translated_desc = translate_text(desc, detected_lang, output_lang)
result += f"\n---\n\n## πŸ”Ž {label}\n\n{translated_desc}\n"
return result if seen else "No named entities found."
# Gradio UI with output language selector
iface = gr.Interface(
fn=multilingual_entity_info,
inputs=[
gr.Textbox(lines=4, placeholder="Type any sentence in any language..."),
gr.Dropdown(label="Select Output Language", choices=["en", "hi", "es", "fr", "de", "ta", "zh"], value="en")
],
outputs=gr.Markdown(),
title="🌐 Multilingual NER + Wikidata + Wikipedia",
description="Detects entities in any language, fetches descriptions from Wikidata (or Wikipedia), and translates the output into your chosen language."
)
if __name__ == "__main__":
iface.launch()