PragmaticPete commited on
Commit
117056d
·
verified ·
1 Parent(s): a09e831

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -4
app.py CHANGED
@@ -8,7 +8,7 @@ import matplotlib.pyplot as plt
8
  import seaborn as sns
9
  from logic.care_gap_engine import evaluate_care_gaps
10
  from logic.financial_model import estimate_financial_recovery
11
- from logic.nlp_report import generate_patient_summary
12
  from logic.exporter import export_to_docx_and_zip
13
 
14
  CONFIG = {
@@ -27,7 +27,9 @@ CONFIG = {
27
 
28
  def run_analysis(file, tone, gap_filter, custom_prompt):
29
  df = pd.read_csv(file.name)
30
- df = df.fillna({col: "" for col in df.select_dtypes(include='object').columns})
 
 
31
 
32
  care_gaps = evaluate_care_gaps(df, CONFIG)
33
  financials = estimate_financial_recovery(care_gaps, df, CONFIG['base_rate'], CONFIG['sdoh_modifiers'])
@@ -74,7 +76,7 @@ def run_analysis(file, tone, gap_filter, custom_prompt):
74
  plt.tight_layout()
75
  plt.savefig(top10_chart_path)
76
 
77
- return merged, zip_bytes, "risk_score_plot.png", "care_gap_freq.png", top10_chart_path
78
 
79
  iface = gr.Interface(
80
  fn=run_analysis,
@@ -85,6 +87,7 @@ iface = gr.Interface(
85
  gr.Textbox(label="Custom Prompt Override (optional)", value="")
86
  ],
87
  outputs=[
 
88
  gr.Dataframe(label="Care Gap & Financial Report"),
89
  gr.File(label="Download All Reports as ZIP"),
90
  gr.Image(label="Risk Score Distribution"),
@@ -92,7 +95,7 @@ iface = gr.Interface(
92
  gr.Image(label="Top 10 Revenue Opportunities")
93
  ],
94
  title="AI Medicare Advantage Analyzer",
95
- description="Upload a patient dataset, evaluate CMS care gaps and SDOH risk, forecast financial recovery, and generate NLP summaries with LLMs."
96
  )
97
 
98
  if __name__ == "__main__":
 
8
  import seaborn as sns
9
  from logic.care_gap_engine import evaluate_care_gaps
10
  from logic.financial_model import estimate_financial_recovery
11
+ from logic.nlp_report import generate_patient_summary, summarize_data_quality
12
  from logic.exporter import export_to_docx_and_zip
13
 
14
  CONFIG = {
 
27
 
28
  def run_analysis(file, tone, gap_filter, custom_prompt):
29
  df = pd.read_csv(file.name)
30
+ df.fillna("", inplace=True)
31
+
32
+ quality_issues_df = summarize_data_quality(df)
33
 
34
  care_gaps = evaluate_care_gaps(df, CONFIG)
35
  financials = estimate_financial_recovery(care_gaps, df, CONFIG['base_rate'], CONFIG['sdoh_modifiers'])
 
76
  plt.tight_layout()
77
  plt.savefig(top10_chart_path)
78
 
79
+ return quality_issues_df, merged, zip_bytes, "risk_score_plot.png", "care_gap_freq.png", top10_chart_path
80
 
81
  iface = gr.Interface(
82
  fn=run_analysis,
 
87
  gr.Textbox(label="Custom Prompt Override (optional)", value="")
88
  ],
89
  outputs=[
90
+ gr.Dataframe(label="⚠️ Data Quality Issues"),
91
  gr.Dataframe(label="Care Gap & Financial Report"),
92
  gr.File(label="Download All Reports as ZIP"),
93
  gr.Image(label="Risk Score Distribution"),
 
95
  gr.Image(label="Top 10 Revenue Opportunities")
96
  ],
97
  title="AI Medicare Advantage Analyzer",
98
+ description="Upload a patient dataset, evaluate CMS care gaps and SDOH risk, forecast financial recovery, generate NLP summaries, and validate data quality."
99
  )
100
 
101
  if __name__ == "__main__":