Update app.py
Browse files
app.py
CHANGED
|
@@ -1,12 +1,15 @@
|
|
| 1 |
from fastapi import FastAPI
|
| 2 |
from pydantic import BaseModel
|
| 3 |
-
import pandas as pd
|
| 4 |
from sentence_transformers import SentenceTransformer
|
| 5 |
import chromadb
|
| 6 |
from fastapi.middleware.cors import CORSMiddleware
|
| 7 |
import uvicorn
|
| 8 |
import requests
|
| 9 |
from itertools import combinations
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
# Define FastAPI app
|
| 11 |
app = FastAPI()
|
| 12 |
|
|
@@ -15,7 +18,6 @@ origins = [
|
|
| 15 |
"localhost:5173"
|
| 16 |
]
|
| 17 |
|
| 18 |
-
|
| 19 |
app.add_middleware(
|
| 20 |
CORSMiddleware,
|
| 21 |
allow_origins=origins,
|
|
@@ -24,22 +26,72 @@ app.add_middleware(
|
|
| 24 |
allow_headers=["*"]
|
| 25 |
)
|
| 26 |
|
| 27 |
-
# Load the
|
| 28 |
-
df = pd.read_csv("hf://datasets/QuyenAnhDE/Diseases_Symptoms/Diseases_Symptoms.csv")
|
| 29 |
-
df['Symptoms'] = df['Symptoms'].str.split(',')
|
| 30 |
-
df['Symptoms'] = df['Symptoms'].apply(lambda x: [s.strip() for s in x])
|
| 31 |
-
|
| 32 |
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
| 33 |
client = chromadb.PersistentClient(path='./chromadb')
|
| 34 |
collection = client.get_or_create_collection(name="symptomsvector")
|
| 35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
class SymptomQuery(BaseModel):
|
| 37 |
symptom: str
|
| 38 |
|
| 39 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
@app.post("/find_matching_symptoms")
|
| 41 |
def find_matching_symptoms(query: SymptomQuery):
|
| 42 |
-
# Generate embedding for the symptom query
|
| 43 |
symptoms = query.symptom.split(',')
|
| 44 |
all_results = []
|
| 45 |
|
|
@@ -50,122 +102,126 @@ def find_matching_symptoms(query: SymptomQuery):
|
|
| 50 |
# Perform similarity search in ChromaDB
|
| 51 |
results = collection.query(
|
| 52 |
query_embeddings=query_embedding.tolist(),
|
| 53 |
-
n_results=3
|
| 54 |
)
|
| 55 |
all_results.extend(results['documents'][0])
|
| 56 |
|
| 57 |
-
# Remove duplicates while preserving order
|
| 58 |
matching_symptoms = list(dict.fromkeys(all_results))
|
| 59 |
-
|
| 60 |
return {"matching_symptoms": matching_symptoms}
|
| 61 |
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
|
|
|
| 67 |
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
n_results=5 # Return top 5 similar symptoms
|
| 72 |
-
)
|
| 73 |
|
| 74 |
-
|
| 75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
-
#
|
| 78 |
-
|
|
|
|
|
|
|
|
|
|
| 79 |
|
| 80 |
-
return {"matching_diseases": matching_diseases['Name'].tolist()}
|
| 81 |
-
all_symptoms=[]
|
| 82 |
-
all_selected_symptoms=[]
|
| 83 |
-
# Endpoint to handle symptom query and return detailed disease list
|
| 84 |
-
@app.post("/find_disease_list")
|
| 85 |
-
def find_disease_list(query: SymptomQuery):
|
| 86 |
-
# Generate embedding for the symptom query
|
| 87 |
-
query_embedding = model.encode([query.symptom])
|
| 88 |
-
|
| 89 |
-
# Perform similarity search in ChromaDB
|
| 90 |
-
results = collection.query(
|
| 91 |
-
query_embeddings=query_embedding.tolist(),
|
| 92 |
-
n_results=5 # Return top 5 similar symptoms
|
| 93 |
-
)
|
| 94 |
-
|
| 95 |
-
# Extract matching symptoms
|
| 96 |
-
matching_symptoms = results['documents'][0]
|
| 97 |
-
all_symptoms.append(matching_symptoms)
|
| 98 |
-
# Filter diseases that match the symptoms
|
| 99 |
-
matching_diseases = df[df['Symptoms'].apply(lambda x: any(s in matching_symptoms for s in x))]
|
| 100 |
-
|
| 101 |
-
# Create a list of disease information
|
| 102 |
disease_list = []
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
|
| 120 |
class SelectedSymptomsQuery(BaseModel):
|
| 121 |
selected_symptoms: list
|
| 122 |
|
|
|
|
|
|
|
|
|
|
| 123 |
@app.post("/find_disease")
|
| 124 |
def find_disease(query: SelectedSymptomsQuery):
|
| 125 |
-
|
| 126 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
|
| 128 |
disease_list = []
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
# Convert the set back to a list for the response
|
| 159 |
-
unique_symptoms_list = list(unique_symptoms_set)
|
| 160 |
|
| 161 |
return {
|
| 162 |
"unique_symptoms_list": unique_symptoms_list,
|
| 163 |
-
"all_selected_symptoms": all_selected_symptoms,
|
| 164 |
-
"all_symptoms": all_symptoms,
|
| 165 |
"disease_list": disease_list
|
| 166 |
}
|
| 167 |
-
class DiseaseListQuery(BaseModel):
|
| 168 |
-
disease_list: list
|
| 169 |
|
| 170 |
class DiseaseDetail(BaseModel):
|
| 171 |
Disease: str
|
|
@@ -175,36 +231,21 @@ class DiseaseDetail(BaseModel):
|
|
| 175 |
|
| 176 |
@app.post("/pass2llm")
|
| 177 |
def pass2llm(query: DiseaseDetail):
|
| 178 |
-
# Prepare the data to be sent to the LLM API
|
| 179 |
-
disease_list_details = query
|
| 180 |
-
|
| 181 |
-
# Make the API request to the Ngrok endpoint to get the public URL
|
| 182 |
headers = {
|
| 183 |
"Authorization": "Bearer 2npJaJjnLBj1RGPcGf0QiyAAJHJ_5qqtw2divkpoAipqN9WLG",
|
| 184 |
"Ngrok-Version": "2"
|
| 185 |
}
|
| 186 |
response = requests.get("https://api.ngrok.com/endpoints", headers=headers)
|
| 187 |
|
| 188 |
-
# Check if the request was successful
|
| 189 |
if response.status_code == 200:
|
| 190 |
llm_api_response = response.json()
|
| 191 |
public_url = llm_api_response['endpoints'][0]['public_url']
|
|
|
|
| 192 |
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
# Make the request to the LLM API
|
| 197 |
-
llm_headers = {
|
| 198 |
-
"Content-Type": "application/json"
|
| 199 |
-
}
|
| 200 |
-
llm_payload = {
|
| 201 |
-
"model": "llama3",
|
| 202 |
-
"prompt": prompt,
|
| 203 |
-
"stream": False
|
| 204 |
-
}
|
| 205 |
llm_response = requests.post(f"{public_url}/api/generate", headers=llm_headers, json=llm_payload)
|
| 206 |
|
| 207 |
-
# Check if the request to the LLM API was successful
|
| 208 |
if llm_response.status_code == 200:
|
| 209 |
llm_response_json = llm_response.json()
|
| 210 |
return {"message": "Successfully passed to LLM!", "llm_response": llm_response_json.get("response")}
|
|
@@ -212,8 +253,7 @@ def pass2llm(query: DiseaseDetail):
|
|
| 212 |
return {"message": "Failed to get response from LLM!", "error": llm_response.text}
|
| 213 |
else:
|
| 214 |
return {"message": "Failed to get public URL from Ngrok!", "error": response.text}
|
|
|
|
| 215 |
# To run the FastAPI app with Uvicorn
|
| 216 |
# if __name__ == "__main__":
|
| 217 |
# uvicorn.run(app, host="0.0.0.0", port=8000)
|
| 218 |
-
|
| 219 |
-
|
|
|
|
| 1 |
from fastapi import FastAPI
|
| 2 |
from pydantic import BaseModel
|
|
|
|
| 3 |
from sentence_transformers import SentenceTransformer
|
| 4 |
import chromadb
|
| 5 |
from fastapi.middleware.cors import CORSMiddleware
|
| 6 |
import uvicorn
|
| 7 |
import requests
|
| 8 |
from itertools import combinations
|
| 9 |
+
import sqlite3
|
| 10 |
+
import pandas as pd
|
| 11 |
+
import os
|
| 12 |
+
|
| 13 |
# Define FastAPI app
|
| 14 |
app = FastAPI()
|
| 15 |
|
|
|
|
| 18 |
"localhost:5173"
|
| 19 |
]
|
| 20 |
|
|
|
|
| 21 |
app.add_middleware(
|
| 22 |
CORSMiddleware,
|
| 23 |
allow_origins=origins,
|
|
|
|
| 26 |
allow_headers=["*"]
|
| 27 |
)
|
| 28 |
|
| 29 |
+
# Load the model at startup
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
| 31 |
client = chromadb.PersistentClient(path='./chromadb')
|
| 32 |
collection = client.get_or_create_collection(name="symptomsvector")
|
| 33 |
|
| 34 |
+
# Helper function to initialize database and populate from CSV if needed
|
| 35 |
+
def init_db():
|
| 36 |
+
conn = sqlite3.connect("diseases_symptoms.db")
|
| 37 |
+
cursor = conn.cursor()
|
| 38 |
+
cursor.execute('''
|
| 39 |
+
CREATE TABLE IF NOT EXISTS diseases (
|
| 40 |
+
id INTEGER PRIMARY KEY,
|
| 41 |
+
name TEXT,
|
| 42 |
+
symptoms TEXT,
|
| 43 |
+
treatments TEXT
|
| 44 |
+
)
|
| 45 |
+
''')
|
| 46 |
+
conn.commit()
|
| 47 |
+
return conn
|
| 48 |
+
|
| 49 |
+
# Populate database from CSV if it's the first time
|
| 50 |
+
if not os.path.exists("diseases_symptoms.db"):
|
| 51 |
+
conn = init_db()
|
| 52 |
+
df = pd.read_csv("hf://datasets/QuyenAnhDE/Diseases_Symptoms/Diseases_Symptoms.csv")
|
| 53 |
+
df['Symptoms'] = df['Symptoms'].str.split(',').apply(lambda x: [s.strip() for s in x])
|
| 54 |
+
|
| 55 |
+
for _, row in df.iterrows():
|
| 56 |
+
symptoms_str = ",".join(row['Symptoms'])
|
| 57 |
+
cursor = conn.cursor()
|
| 58 |
+
cursor.execute("INSERT INTO diseases (name, symptoms, treatments) VALUES (?, ?, ?)",
|
| 59 |
+
(row['Name'], symptoms_str, row.get('Treatments', '')))
|
| 60 |
+
conn.commit()
|
| 61 |
+
conn.close()
|
| 62 |
+
|
| 63 |
class SymptomQuery(BaseModel):
|
| 64 |
symptom: str
|
| 65 |
|
| 66 |
+
# Helper function to fetch diseases matching symptoms from SQLite
|
| 67 |
+
def fetch_diseases_by_symptoms(matching_symptoms):
|
| 68 |
+
conn = sqlite3.connect("diseases_symptoms.db")
|
| 69 |
+
cursor = conn.cursor()
|
| 70 |
+
disease_list = []
|
| 71 |
+
unique_symptoms_list = []
|
| 72 |
+
matching_symptom_str = ','.join(matching_symptoms)
|
| 73 |
+
|
| 74 |
+
# Retrieve matching diseases based on symptoms in SQLite
|
| 75 |
+
for row in cursor.execute("SELECT name, symptoms, treatments FROM diseases WHERE symptoms LIKE ?",
|
| 76 |
+
(f'%{matching_symptom_str}%',)):
|
| 77 |
+
disease_info = {
|
| 78 |
+
'Disease': row[0],
|
| 79 |
+
'Symptoms': row[1].split(','),
|
| 80 |
+
'Treatments': row[2]
|
| 81 |
+
}
|
| 82 |
+
disease_list.append(disease_info)
|
| 83 |
+
|
| 84 |
+
# Add symptoms to the unique list, converting to lowercase to avoid duplicates
|
| 85 |
+
for symptom in row[1].split(','):
|
| 86 |
+
symptom_lower = symptom.strip().lower()
|
| 87 |
+
if symptom_lower not in unique_symptoms_list:
|
| 88 |
+
unique_symptoms_list.append(symptom_lower)
|
| 89 |
+
|
| 90 |
+
conn.close()
|
| 91 |
+
return disease_list, unique_symptoms_list
|
| 92 |
+
|
| 93 |
@app.post("/find_matching_symptoms")
|
| 94 |
def find_matching_symptoms(query: SymptomQuery):
|
|
|
|
| 95 |
symptoms = query.symptom.split(',')
|
| 96 |
all_results = []
|
| 97 |
|
|
|
|
| 102 |
# Perform similarity search in ChromaDB
|
| 103 |
results = collection.query(
|
| 104 |
query_embeddings=query_embedding.tolist(),
|
| 105 |
+
n_results=3
|
| 106 |
)
|
| 107 |
all_results.extend(results['documents'][0])
|
| 108 |
|
|
|
|
| 109 |
matching_symptoms = list(dict.fromkeys(all_results))
|
|
|
|
| 110 |
return {"matching_symptoms": matching_symptoms}
|
| 111 |
|
| 112 |
+
@app.post("/find_disease_list")
|
| 113 |
+
def find_disease_list(query: SymptomQuery):
|
| 114 |
+
# Normalize and embed each input symptom
|
| 115 |
+
selected_symptoms = [symptom.strip().lower() for symptom in query.symptom.split(',')]
|
| 116 |
+
all_selected_symptoms.update(selected_symptoms) # Add new symptoms to the set
|
| 117 |
+
all_results = []
|
| 118 |
|
| 119 |
+
for symptom in selected_symptoms:
|
| 120 |
+
# Generate the embedding for the current symptom
|
| 121 |
+
query_embedding = model.encode([symptom])
|
|
|
|
|
|
|
| 122 |
|
| 123 |
+
# Perform similarity search in ChromaDB
|
| 124 |
+
results = collection.query(
|
| 125 |
+
query_embeddings=query_embedding.tolist(),
|
| 126 |
+
n_results=5 # Return top 5 similar symptoms for each input symptom
|
| 127 |
+
)
|
| 128 |
+
# Aggregate the matching symptoms from the results
|
| 129 |
+
all_results.extend(results['documents'][0])
|
| 130 |
|
| 131 |
+
# Remove duplicates while preserving order
|
| 132 |
+
matching_symptoms = list(dict.fromkeys(all_results))
|
| 133 |
+
|
| 134 |
+
conn = sqlite3.connect("diseases_symptoms.db")
|
| 135 |
+
cursor = conn.cursor()
|
| 136 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
disease_list = []
|
| 138 |
+
unique_symptoms_set = set()
|
| 139 |
+
|
| 140 |
+
# Retrieve diseases that contain any of the matching symptoms
|
| 141 |
+
for row in cursor.execute("SELECT name, symptoms, treatments FROM diseases"):
|
| 142 |
+
disease_name = row[0]
|
| 143 |
+
disease_symptoms = [symptom.strip().lower() for symptom in row[1].split(',')] # Normalize database symptoms
|
| 144 |
+
treatments = row[2]
|
| 145 |
+
|
| 146 |
+
# Check if there is any overlap between matching symptoms and the disease symptoms
|
| 147 |
+
matched_symptoms = [symptom for symptom in matching_symptoms if symptom in disease_symptoms]
|
| 148 |
+
|
| 149 |
+
if matched_symptoms: # Include disease if there is at least one matching symptom
|
| 150 |
+
disease_info = {
|
| 151 |
+
'Disease': disease_name,
|
| 152 |
+
'Symptoms': disease_symptoms,
|
| 153 |
+
'Treatments': treatments
|
| 154 |
+
}
|
| 155 |
+
disease_list.append(disease_info)
|
| 156 |
+
|
| 157 |
+
# Add symptoms not yet selected by the user to unique symptoms list
|
| 158 |
+
for symptom in disease_symptoms:
|
| 159 |
+
if symptom not in selected_symptoms:
|
| 160 |
+
unique_symptoms_set.add(symptom)
|
| 161 |
+
|
| 162 |
+
conn.close()
|
| 163 |
+
|
| 164 |
+
# Convert unique symptoms set to a sorted list for consistent output
|
| 165 |
+
unique_symptoms_list = sorted(unique_symptoms_set)
|
| 166 |
+
|
| 167 |
+
return {
|
| 168 |
+
"disease_list": disease_list,
|
| 169 |
+
"unique_symptoms_list": unique_symptoms_list
|
| 170 |
+
}
|
| 171 |
+
|
| 172 |
+
|
| 173 |
|
| 174 |
class SelectedSymptomsQuery(BaseModel):
|
| 175 |
selected_symptoms: list
|
| 176 |
|
| 177 |
+
# Initialize global list for persistent selected symptoms
|
| 178 |
+
all_selected_symptoms = set() # Use a set to avoid duplicates
|
| 179 |
+
|
| 180 |
@app.post("/find_disease")
|
| 181 |
def find_disease(query: SelectedSymptomsQuery):
|
| 182 |
+
# Normalize input symptoms and add them to global list
|
| 183 |
+
new_symptoms = [symptom.strip().lower() for symptom in query.selected_symptoms]
|
| 184 |
+
all_selected_symptoms.update(new_symptoms) # Add new symptoms to the set
|
| 185 |
+
|
| 186 |
+
conn = sqlite3.connect("diseases_symptoms.db")
|
| 187 |
+
cursor = conn.cursor()
|
| 188 |
|
| 189 |
disease_list = []
|
| 190 |
+
unique_symptoms_set = set()
|
| 191 |
+
|
| 192 |
+
# Fetch all diseases and calculate matching symptoms
|
| 193 |
+
for row in cursor.execute("SELECT name, symptoms, treatments FROM diseases"):
|
| 194 |
+
disease_name = row[0]
|
| 195 |
+
disease_symptoms = [symptom.strip().lower() for symptom in row[1].split(',')]
|
| 196 |
+
treatments = row[2]
|
| 197 |
+
|
| 198 |
+
# Find common symptoms between all selected and disease symptoms
|
| 199 |
+
matched_symptoms = [symptom for symptom in all_selected_symptoms if symptom in disease_symptoms]
|
| 200 |
+
|
| 201 |
+
# Check for full match between known symptoms and disease symptoms
|
| 202 |
+
if len(matched_symptoms) == len(all_selected_symptoms):
|
| 203 |
+
disease_info = {
|
| 204 |
+
'Disease': disease_name,
|
| 205 |
+
'Symptoms': disease_symptoms,
|
| 206 |
+
'Treatments': treatments
|
| 207 |
+
}
|
| 208 |
+
disease_list.append(disease_info)
|
| 209 |
+
|
| 210 |
+
# Add symptoms not yet selected by the user to unique symptoms list
|
| 211 |
+
for symptom in disease_symptoms:
|
| 212 |
+
if symptom not in all_selected_symptoms:
|
| 213 |
+
unique_symptoms_set.add(symptom)
|
| 214 |
+
|
| 215 |
+
conn.close()
|
| 216 |
+
|
| 217 |
+
# Convert unique symptoms set to a sorted list for consistent output
|
| 218 |
+
unique_symptoms_list = sorted(unique_symptoms_set)
|
|
|
|
|
|
|
| 219 |
|
| 220 |
return {
|
| 221 |
"unique_symptoms_list": unique_symptoms_list,
|
| 222 |
+
"all_selected_symptoms": list(all_selected_symptoms), # Convert set to list for JSON response
|
|
|
|
| 223 |
"disease_list": disease_list
|
| 224 |
}
|
|
|
|
|
|
|
| 225 |
|
| 226 |
class DiseaseDetail(BaseModel):
|
| 227 |
Disease: str
|
|
|
|
| 231 |
|
| 232 |
@app.post("/pass2llm")
|
| 233 |
def pass2llm(query: DiseaseDetail):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 234 |
headers = {
|
| 235 |
"Authorization": "Bearer 2npJaJjnLBj1RGPcGf0QiyAAJHJ_5qqtw2divkpoAipqN9WLG",
|
| 236 |
"Ngrok-Version": "2"
|
| 237 |
}
|
| 238 |
response = requests.get("https://api.ngrok.com/endpoints", headers=headers)
|
| 239 |
|
|
|
|
| 240 |
if response.status_code == 200:
|
| 241 |
llm_api_response = response.json()
|
| 242 |
public_url = llm_api_response['endpoints'][0]['public_url']
|
| 243 |
+
prompt = f"Here is a list of diseases and their details: {query}. Please generate a summary."
|
| 244 |
|
| 245 |
+
llm_headers = {"Content-Type": "application/json"}
|
| 246 |
+
llm_payload = {"model": "llama3", "prompt": prompt, "stream": False}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 247 |
llm_response = requests.post(f"{public_url}/api/generate", headers=llm_headers, json=llm_payload)
|
| 248 |
|
|
|
|
| 249 |
if llm_response.status_code == 200:
|
| 250 |
llm_response_json = llm_response.json()
|
| 251 |
return {"message": "Successfully passed to LLM!", "llm_response": llm_response_json.get("response")}
|
|
|
|
| 253 |
return {"message": "Failed to get response from LLM!", "error": llm_response.text}
|
| 254 |
else:
|
| 255 |
return {"message": "Failed to get public URL from Ngrok!", "error": response.text}
|
| 256 |
+
|
| 257 |
# To run the FastAPI app with Uvicorn
|
| 258 |
# if __name__ == "__main__":
|
| 259 |
# uvicorn.run(app, host="0.0.0.0", port=8000)
|
|
|
|
|
|