Spaces:
Sleeping
Sleeping
import streamlit as st | |
from PIL import Image | |
import jax | |
import numpy as np | |
import jax.numpy as jnp # JAX NumPy | |
from flax.training import train_state # Useful dataclass to keep train state | |
from flax import linen as nn # Linen API | |
from huggingface_hub import HfFileSystem | |
from flax.serialization import msgpack_restore, from_state_dict | |
import os | |
hf_key = text_input = st.text_input("Access token") | |
class CNN(nn.Module): | |
"""A simple CNN model.""" | |
def __call__(self, x): | |
x = nn.Conv(features=32, kernel_size=(3, 3))(x) | |
x = nn.relu(x) | |
x = nn.avg_pool(x, window_shape=(2, 2), strides=(2, 2)) | |
x = nn.Conv(features=64, kernel_size=(3, 3))(x) | |
x = nn.relu(x) | |
x = nn.avg_pool(x, window_shape=(2, 2), strides=(2, 2)) | |
x = x.reshape((x.shape[0], -1)) # flatten | |
x = nn.Dense(features=256)(x) | |
x = nn.relu(x) | |
x = nn.Dense(features=10)(x) | |
return x | |
cnn = CNN() | |
params = cnn.init(jax.random.PRNGKey(0), jnp.ones([1, 28, 28, 1]))['params'] | |
fs = HfFileSystem(token=hf_key) | |
with fs.open("PrakhAI/HelloWorld/checkpoint.msgpack", "rb") as f: | |
params = from_state_dict(params, msgpack_restore(f.read())["params"]) | |
# print(type(state)) | |
# print(state) | |
# print([(k, type(v)) for (k, v) in state.items()]) | |
# print(state['params']) | |
# print(state['opt_state']) | |
# logits = state.apply_fn({'params': state.params}, batch['image']) | |
# print(logits) | |
# x = st.slider('Select a value') | |
# st.write(x, 'squared is', x * x) | |
# print(dir(cnn)) | |
uploaded_file = st.file_uploader("Input Images", type=['jpg','png','tif'], accept_multiple_files=False) | |
if uploaded_file is None: | |
st.write("Please upload an image!") | |
else: | |
img = Image.open(uploaded_file) | |
rescaled = img.convert("HSV").split()[2].resize((28, 28)) | |
st.image(rescaled) | |
brightness = jnp.array(rescaled) | |
input = brightness.reshape(1, 28, 28, 1) / 255. | |
st.write(cnn.apply({"params": params}, input).argmax(axis=1)[0]) | |
def gridify(kernel, grid, kernel_size, scaling=5, padding=1): | |
grid = np.pad(np.array(np.pad(np.repeat(np.repeat(kernel, repeats=scaling, axis=0), repeats=scaling, axis=1), ((padding,),(padding,),(0,),(0,)), 'constant', constant_values=(-1,)).reshape((kernel_size[0]*scaling+2*padding, kernel_size[1]*scaling+2*padding, grid[0], grid[1])).transpose(2,0,3,1).reshape(grid[0]*(kernel_size[0]*scaling+2*padding), grid[1]*(kernel_size[1]*scaling+2*padding))+1)*127., (padding,), 'constant', constant_values=(0,)) | |
st.image(Image.fromarray(np.repeat(np.expand_dims(grid, axis=0), repeats=3, axis=0).astype(np.uint8).transpose(1,2,0), mode="RGB")) | |
with st.expander("See first convolutional layer"): | |
gridify(params["Conv_0"]["kernel"], grid=(4,8), kernel_size=(3,3)) | |
with st.expander("See second convolutional layer"): | |
print(params["Conv_1"]["kernel"].shape) | |
gridify(params["Conv_1"]["kernel"], grid=(32,64), kernel_size=(3,3)) | |