PrakhAI commited on
Commit
906efc0
·
1 Parent(s): 7639ac8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -6
app.py CHANGED
@@ -63,15 +63,14 @@ if len(uploaded_files) == 0:
63
  st.write("Please upload an image!")
64
  else:
65
  for uploaded_file in uploaded_files:
66
- img = Image.open(uploaded_file)
67
- rescaled = img.convert("HSV").split()[2].resize((28, 28))
68
  st.image(rescaled)
69
- brightness = jnp.array(rescaled)
70
- input = brightness.reshape(1, 28, 28, 1) / 255.
71
- st.write(cnn.apply({"params": params}, input).argmax(axis=1)[0])
72
 
73
  def gridify(kernel, grid, kernel_size, scaling=5, padding=1):
74
- grid = np.pad(np.array(np.pad(np.repeat(np.repeat(kernel, repeats=scaling, axis=0), repeats=scaling, axis=1), ((padding,),(padding,),(0,),(0,)), 'constant', constant_values=(-1,)).reshape((kernel_size[0]*scaling+2*padding, kernel_size[1]*scaling+2*padding, grid[0], grid[1])).transpose(2,0,3,1).reshape(grid[0]*(kernel_size[0]*scaling+2*padding), grid[1]*(kernel_size[1]*scaling+2*padding))+1)*127., (padding,), 'constant', constant_values=(0,))
 
75
  st.image(Image.fromarray(np.repeat(np.expand_dims(grid, axis=0), repeats=3, axis=0).astype(np.uint8).transpose(1,2,0), mode="RGB"))
76
 
77
  with st.expander("See first convolutional layer"):
 
63
  st.write("Please upload an image!")
64
  else:
65
  for uploaded_file in uploaded_files:
66
+ rescaled = Image.open(uploaded_file).convert("HSV").split()[2].resize((28, 28))
 
67
  st.image(rescaled)
68
+ input = jnp.array(rescaled).reshape(1, 28, 28, 1) / 255.
69
+ st.write("Model Prediction: " + cnn.apply({"params": params}, input).argmax(axis=1)[0])
 
70
 
71
  def gridify(kernel, grid, kernel_size, scaling=5, padding=1):
72
+ scaled_and_padded = np.pad(np.repeat(np.repeat(kernel, repeats=scaling, axis=0), repeats=scaling, axis=1), ((padding,),(padding,),(0,),(0,)), 'constant', constant_values=(-1,))
73
+ grid = np.pad(np.array(scaled_and_padded.reshape((kernel_size[0]*scaling+2*padding, kernel_size[1]*scaling+2*padding, grid[0], grid[1])).transpose(2,0,3,1).reshape(grid[0]*(kernel_size[0]*scaling+2*padding), grid[1]*(kernel_size[1]*scaling+2*padding))+1)*127., (padding,), 'constant', constant_values=(0,))
74
  st.image(Image.fromarray(np.repeat(np.expand_dims(grid, axis=0), repeats=3, axis=0).astype(np.uint8).transpose(1,2,0), mode="RGB"))
75
 
76
  with st.expander("See first convolutional layer"):