import streamlit as st from PIL import Image import jax import numpy as np import jax.numpy as jnp # JAX NumPy from flax.training import train_state # Useful dataclass to keep train state from flax import linen as nn # Linen API from huggingface_hub import HfFileSystem from flax.serialization import msgpack_restore, from_state_dict class CNN(nn.Module): """A simple CNN model.""" @nn.compact def __call__(self, x): x = nn.Conv(features=32, kernel_size=(3, 3))(x) x = nn.relu(x) x = nn.avg_pool(x, window_shape=(2, 2), strides=(2, 2)) x = nn.Conv(features=64, kernel_size=(3, 3))(x) x = nn.relu(x) x = nn.avg_pool(x, window_shape=(2, 2), strides=(2, 2)) x = x.reshape((x.shape[0], -1)) # flatten x = nn.Dense(features=256)(x) x = nn.relu(x) x = nn.Dense(features=10)(x) return x cnn = CNN() params = cnn.init(jax.random.PRNGKey(0), jnp.ones([1, 28, 28, 1]))['params'] fs = HfFileSystem() with fs.open("PrakhAI/HelloWorld/checkpoint.msgpack", "rb") as f: params = from_state_dict(params, msgpack_restore(f.read())["params"]) # print(type(state)) # print(state) # print([(k, type(v)) for (k, v) in state.items()]) # print(state['params']) # print(state['opt_state']) # logits = state.apply_fn({'params': state.params}, batch['image']) # print(logits) # x = st.slider('Select a value') # st.write(x, 'squared is', x * x) # print(dir(cnn)) uploaded_file = st.file_uploader("Input Images", type=['jpg','png','tif'], accept_multiple_files=False) if uploaded_file is None: st.write("Please upload an image!") else: img = Image.open(uploaded_file) rescaled = img.convert("HSV").split()[2].resize((28, 28)) st.image(rescaled) brightness = jnp.array(rescaled) input = brightness.reshape(1, 28, 28, 1) / 255. st.write(cnn.apply({"params": params}, input).argmax(axis=1)[0]) def gridify(kernel, grid, kernel_size, scaling=5, padding=1): grid = np.pad(np.array(np.pad(np.repeat(np.repeat(kernel, repeats=scaling, axis=0), repeats=scaling, axis=1), ((padding,),(padding,),(0,),(0,)), 'constant', constant_values=(-1,)).reshape((kernel_size[0]*scaling+2*padding, kernel_size[1]*scaling+2*padding, grid[0], grid[1])).transpose(2,0,3,1).reshape(grid[0]*(kernel_size[0]*scaling+2*padding), grid[1]*(kernel_size[1]*scaling+2*padding))+1)*127., (padding,), 'constant', constant_values=(0,)) st.image(Image.fromarray(np.repeat(np.expand_dims(grid, axis=0), repeats=3, axis=0).astype(np.uint8).transpose(1,2,0), mode="RGB")) with st.expander("See first convolutional layer"): gridify(params["Conv_0"]["kernel"], grid=(4,8), kernel_size=(3,3)) with st.expander("See second convolutional layer"): print(params["Conv_1"]["kernel"].shape) gridify(params["Conv_1"]["kernel"], grid=(32,64), kernel_size=(3,3))