File size: 1,227 Bytes
df91be5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import streamlit as st

# Page Title
st.title("🧠 Student Depression Classification")

# Subheader
st.subheader("Welcome to my Machine Learning Project!")

# Introduction
st.markdown("""

πŸ“Œ **Project Introduction:**

This application predicts whether a student is likely to experience depression based on academic, psychological, and lifestyle factors.



The model is trained using a **K-Nearest Neighbors (KNN)** Classifier and deployed through an interactive **Streamlit web interface**.



This project demonstrates the real-world application of machine learning for mental health prediction and awareness.

""")

# Overview
st.markdown("""

πŸ“š **Project Overview:**

- Built using **Python**, **Pandas**, **Scikit-learn**, and **Streamlit**  

- Machine Learning Algorithm: **K-Nearest Neighbors (KNN) Classifier**  

- Trained on a cleaned and preprocessed student mental health dataset  

- Includes data cleaning, encoding, scaling, and model evaluation

""")

# Author
st.markdown("""

πŸ‘¨β€πŸ’» **Project by:**  

**Sai Praneeth Marripelli**  

Postgraduate MCA Student  

**Nizam College, Osmania University**

""")

if st.button("Next"):
    st.switch_page("pages/1 Problem Statement.py")