File size: 6,683 Bytes
9a243e1 b8fdad3 9a243e1 b8fdad3 9a243e1 b8fdad3 05e9d12 b8fdad3 05e9d12 9a243e1 b8fdad3 05e9d12 b8fdad3 9a243e1 b8fdad3 9a243e1 b8fdad3 05e9d12 b8fdad3 05e9d12 b8fdad3 05e9d12 b8fdad3 05e9d12 b8fdad3 05e9d12 b8fdad3 9a243e1 05e9d12 b8fdad3 05e9d12 b8fdad3 05e9d12 b8fdad3 9a243e1 b8fdad3 05e9d12 b8fdad3 9a243e1 b8fdad3 05e9d12 b8fdad3 05e9d12 b8fdad3 05e9d12 9a243e1 b8fdad3 05e9d12 9a243e1 05e9d12 b8fdad3 05e9d12 9a243e1 05e9d12 9a243e1 05e9d12 b8fdad3 05e9d12 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
import gradio as gr
from transformers import pipeline
import requests
class AIHealthAssistant:
def __init__(self):
# Initialize symptom checker model
self.symptom_checker = pipeline(
"text-classification",
model="microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext"
)
# Initialize medical QA model
self.medical_qa = pipeline(
"question-answering",
model="deepset/roberta-base-squad2"
)
# Knowledge base (can be replaced with API calls)
self.disease_db = {
"influenza": {
"symptoms": ["fever", "cough", "sore throat", "runny nose", "body aches"],
"advice": "Rest, stay hydrated, take fever reducers like acetaminophen",
"precautions": ["Annual flu vaccine", "Frequent hand washing", "Avoid close contact"]
},
"migraine": {
"symptoms": ["severe headache", "nausea", "sensitivity to light", "aura"],
"advice": "Rest in dark room, take prescribed medication, apply cold compress",
"precautions": ["Identify triggers", "Maintain sleep schedule", "Stay hydrated"]
}
}
def get_disease_from_symptoms(self, symptoms):
"""Predict disease from symptoms using Hugging Face model"""
try:
# For production, replace with a proper medical model
result = self.symptom_checker(symptoms)
# Map to diseases in our database
for disease in self.disease_db:
if disease in symptoms.lower():
return disease
# Fallback to first disease (in real app, use proper mapping)
return list(self.disease_db.keys())[0]
except Exception as e:
print(f"Model error: {e}")
return "unknown"
def get_medical_info(self, disease, info_type):
"""Get medical information from database or API"""
disease = disease.lower()
# Check local database first
if disease in self.disease_db:
return self.disease_db[disease].get(info_type, "Information not available")
# Fallback to API (example using hypothetical medical API)
try:
if info_type == "symptoms":
prompt = f"What are the symptoms of {disease}?"
elif info_type == "advice":
prompt = f"What is the treatment for {disease}?"
else:
prompt = f"What precautions should be taken for {disease}?"
# In a real app, replace with actual API call:
# response = requests.get(f"https://medical-api.example.com/{disease}")
# return response.json().get(info_type)
# For demo, using the QA model
context = f"{disease} is a medical condition. {self.get_medical_advice_from_api(disease)}"
result = self.medical_qa(question=prompt, context=context)
return result['answer']
except Exception as e:
print(f"API error: {e}")
return "Information not available"
def get_medical_advice_from_api(self, disease):
"""Simulate API response for demo purposes"""
api_responses = {
"diabetes": "Diabetes requires blood sugar monitoring, insulin therapy, and dietary changes.",
"hypertension": "Hypertension management includes medication, low-salt diet, and regular exercise."
}
return api_responses.get(disease.lower(), "Consult a healthcare professional for proper diagnosis and treatment.")
def create_demo():
assistant = AIHealthAssistant()
def process_input(user_input, mode):
if mode == "Symptoms to Disease":
disease = assistant.get_disease_from_symptoms(user_input)
symptoms = assistant.get_medical_info(disease, "symptoms")
advice = assistant.get_medical_info(disease, "advice")
precautions = assistant.get_medical_info(disease, "precautions")
output = (
f"π Possible Condition: {disease.capitalize()}\n\n"
f"π Symptoms:\n- " + "\n- ".join(symptoms) + "\n\n"
f"π Recommended Actions:\n{advice}\n\n"
f"π‘οΈ Precautions:\n- " + "\n- ".join(precautions)
)
elif mode == "Disease to Symptoms":
symptoms = assistant.get_medical_info(user_input, "symptoms")
advice = assistant.get_medical_info(user_input, "advice")
output = (
f"π Symptoms of {user_input.capitalize()}:\n- " + "\n- ".join(symptoms) + "\n\n"
f"π Recommended Actions:\n{advice}"
)
return output
with gr.Blocks(title="AI Health Assistant") as demo:
gr.Markdown("# π₯ AI Health Assistant")
gr.Markdown("Enter symptoms or a disease name to get medical information")
with gr.Row():
input_mode = gr.Radio(
choices=["Symptoms to Disease", "Disease to Symptoms"],
label="Input Mode"
)
user_input = gr.Textbox(
label="Input",
placeholder="Enter symptoms or disease name..."
)
submit_btn = gr.Button("Get Medical Information")
output = gr.Textbox(label="Result", interactive=False, lines=10)
# Example inputs
gr.Examples(
examples=[
["headache, nausea, sensitivity to light", "Symptoms to Disease"],
["influenza", "Disease to Symptoms"],
["fever, cough, sore throat", "Symptoms to Disease"]
],
inputs=[user_input, input_mode],
outputs=output,
fn=process_input,
cache_examples=True
)
submit_btn.click(
fn=process_input,
inputs=[user_input, input_mode],
outputs=output
)
gr.Markdown("""
## β οΈ Important Disclaimer
This AI assistant provides general health information only and is not a substitute
for professional medical advice, diagnosis, or treatment.
Always seek the advice of your physician or other qualified health provider
with any questions you may have regarding a medical condition.
""")
return demo
if __name__ == "__main__":
demo = create_demo()
demo.launch() |