Update app.py
Browse files
app.py
CHANGED
@@ -1,165 +1,50 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
3 |
-
import requests
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
self.medical_qa = pipeline(
|
15 |
-
"question-answering",
|
16 |
-
model="deepset/roberta-base-squad2"
|
17 |
-
)
|
18 |
-
|
19 |
-
# Knowledge base (can be replaced with API calls)
|
20 |
-
self.disease_db = {
|
21 |
-
"influenza": {
|
22 |
-
"symptoms": ["fever", "cough", "sore throat", "runny nose", "body aches"],
|
23 |
-
"advice": "Rest, stay hydrated, take fever reducers like acetaminophen",
|
24 |
-
"precautions": ["Annual flu vaccine", "Frequent hand washing", "Avoid close contact"]
|
25 |
-
},
|
26 |
-
"migraine": {
|
27 |
-
"symptoms": ["severe headache", "nausea", "sensitivity to light", "aura"],
|
28 |
-
"advice": "Rest in dark room, take prescribed medication, apply cold compress",
|
29 |
-
"precautions": ["Identify triggers", "Maintain sleep schedule", "Stay hydrated"]
|
30 |
-
}
|
31 |
-
}
|
32 |
-
|
33 |
-
def get_disease_from_symptoms(self, symptoms):
|
34 |
-
"""Predict disease from symptoms using Hugging Face model"""
|
35 |
-
try:
|
36 |
-
# For production, replace with a proper medical model
|
37 |
-
result = self.symptom_checker(symptoms)
|
38 |
-
|
39 |
-
# Map to diseases in our database
|
40 |
-
for disease in self.disease_db:
|
41 |
-
if disease in symptoms.lower():
|
42 |
-
return disease
|
43 |
-
|
44 |
-
# Fallback to first disease (in real app, use proper mapping)
|
45 |
-
return list(self.disease_db.keys())[0]
|
46 |
-
|
47 |
-
except Exception as e:
|
48 |
-
print(f"Model error: {e}")
|
49 |
-
return "unknown"
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
return self.disease_db[disease].get(info_type, "Information not available")
|
58 |
-
|
59 |
-
# Fallback to API (example using hypothetical medical API)
|
60 |
-
try:
|
61 |
-
if info_type == "symptoms":
|
62 |
-
prompt = f"What are the symptoms of {disease}?"
|
63 |
-
elif info_type == "advice":
|
64 |
-
prompt = f"What is the treatment for {disease}?"
|
65 |
-
else:
|
66 |
-
prompt = f"What precautions should be taken for {disease}?"
|
67 |
-
|
68 |
-
# In a real app, replace with actual API call:
|
69 |
-
# response = requests.get(f"https://medical-api.example.com/{disease}")
|
70 |
-
# return response.json().get(info_type)
|
71 |
-
|
72 |
-
# For demo, using the QA model
|
73 |
-
context = f"{disease} is a medical condition. {self.get_medical_advice_from_api(disease)}"
|
74 |
-
result = self.medical_qa(question=prompt, context=context)
|
75 |
-
return result['answer']
|
76 |
-
|
77 |
-
except Exception as e:
|
78 |
-
print(f"API error: {e}")
|
79 |
-
return "Information not available"
|
80 |
|
81 |
-
|
82 |
-
|
83 |
-
api_responses = {
|
84 |
-
"diabetes": "Diabetes requires blood sugar monitoring, insulin therapy, and dietary changes.",
|
85 |
-
"hypertension": "Hypertension management includes medication, low-salt diet, and regular exercise."
|
86 |
-
}
|
87 |
-
return api_responses.get(disease.lower(), "Consult a healthcare professional for proper diagnosis and treatment.")
|
88 |
|
89 |
-
|
90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
f"🔍 Possible Condition: {disease.capitalize()}\n\n"
|
101 |
-
f"📋 Symptoms:\n- " + "\n- ".join(symptoms) + "\n\n"
|
102 |
-
f"💊 Recommended Actions:\n{advice}\n\n"
|
103 |
-
f"🛡️ Precautions:\n- " + "\n- ".join(precautions)
|
104 |
-
)
|
105 |
-
|
106 |
-
elif mode == "Disease to Symptoms":
|
107 |
-
symptoms = assistant.get_medical_info(user_input, "symptoms")
|
108 |
-
advice = assistant.get_medical_info(user_input, "advice")
|
109 |
-
|
110 |
-
output = (
|
111 |
-
f"📋 Symptoms of {user_input.capitalize()}:\n- " + "\n- ".join(symptoms) + "\n\n"
|
112 |
-
f"💊 Recommended Actions:\n{advice}"
|
113 |
-
)
|
114 |
-
|
115 |
-
return output
|
116 |
|
117 |
-
|
118 |
-
gr.Markdown("# 🏥 AI Health Assistant")
|
119 |
-
gr.Markdown("Enter symptoms or a disease name to get medical information")
|
120 |
-
|
121 |
-
with gr.Row():
|
122 |
-
input_mode = gr.Radio(
|
123 |
-
choices=["Symptoms to Disease", "Disease to Symptoms"],
|
124 |
-
label="Input Mode"
|
125 |
-
)
|
126 |
-
user_input = gr.Textbox(
|
127 |
-
label="Input",
|
128 |
-
placeholder="Enter symptoms or disease name..."
|
129 |
-
)
|
130 |
-
|
131 |
-
submit_btn = gr.Button("Get Medical Information")
|
132 |
-
output = gr.Textbox(label="Result", interactive=False, lines=10)
|
133 |
-
|
134 |
-
# Example inputs
|
135 |
-
gr.Examples(
|
136 |
-
examples=[
|
137 |
-
["headache, nausea, sensitivity to light", "Symptoms to Disease"],
|
138 |
-
["influenza", "Disease to Symptoms"],
|
139 |
-
["fever, cough, sore throat", "Symptoms to Disease"]
|
140 |
-
],
|
141 |
-
inputs=[user_input, input_mode],
|
142 |
-
outputs=output,
|
143 |
-
fn=process_input,
|
144 |
-
cache_examples=True
|
145 |
-
)
|
146 |
-
|
147 |
-
submit_btn.click(
|
148 |
-
fn=process_input,
|
149 |
-
inputs=[user_input, input_mode],
|
150 |
-
outputs=output
|
151 |
-
)
|
152 |
-
|
153 |
-
gr.Markdown("""
|
154 |
-
## ⚠️ Important Disclaimer
|
155 |
-
This AI assistant provides general health information only and is not a substitute
|
156 |
-
for professional medical advice, diagnosis, or treatment.
|
157 |
-
Always seek the advice of your physician or other qualified health provider
|
158 |
-
with any questions you may have regarding a medical condition.
|
159 |
-
""")
|
160 |
|
161 |
-
|
|
|
|
|
|
|
162 |
|
163 |
-
|
164 |
-
demo = create_demo()
|
165 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
|
|
3 |
|
4 |
+
# Initialize medical LLM (using smaller model for Spaces compatibility)
|
5 |
+
med_llm = pipeline("text-generation", model="distilgpt2")
|
6 |
+
|
7 |
+
def diagnose(symptoms):
|
8 |
+
prompt = f"""Act as an AI doctor. Analyze these symptoms:
|
9 |
+
{symptoms}
|
10 |
+
|
11 |
+
Possible diagnoses from most to least likely:
|
12 |
+
1."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
diagnosis = med_llm(
|
15 |
+
prompt,
|
16 |
+
max_length=400,
|
17 |
+
num_return_sequences=1,
|
18 |
+
temperature=0.7
|
19 |
+
)[0]['generated_text']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
# Extract just the diagnosis part
|
22 |
+
return diagnosis.split("1.", 1)[-1].strip()
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
+
with gr.Blocks() as demo:
|
25 |
+
gr.Markdown("# 🌍 Global Symptom Checker")
|
26 |
+
gr.Markdown("Enter symptoms to get possible diagnoses")
|
27 |
+
|
28 |
+
with gr.Row():
|
29 |
+
symptoms = gr.Textbox(label="Describe your symptoms", lines=3)
|
30 |
+
submit = gr.Button("Diagnose")
|
31 |
+
|
32 |
+
output = gr.Textbox(label="Possible Conditions", interactive=False)
|
33 |
|
34 |
+
gr.Examples(
|
35 |
+
examples=[
|
36 |
+
["fever, headache, muscle pain"],
|
37 |
+
["cough, shortness of breath, fatigue"],
|
38 |
+
["rash, joint pain, red eyes"]
|
39 |
+
],
|
40 |
+
inputs=symptoms
|
41 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
+
submit.click(diagnose, inputs=symptoms, outputs=output)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
+
gr.Markdown("""
|
46 |
+
⚠️ **Disclaimer**: This AI provides general information only.
|
47 |
+
Always consult a real doctor for medical advice.
|
48 |
+
""")
|
49 |
|
50 |
+
demo.launch()
|
|
|
|