Update app.py
Browse files
app.py
CHANGED
@@ -1,54 +1,106 @@
|
|
1 |
-
import
|
2 |
-
from transformers import pipeline
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
)
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
else:
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
#
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
31 |
else:
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
3 |
+
import pandas as pd
|
4 |
+
|
5 |
+
# β
Load IBM Granite model with cache to speed up
|
6 |
+
@st.cache_resource
|
7 |
+
def load_model():
|
8 |
+
model_id = "ibm-granite/granite-3.3-2b-instruct"
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
10 |
+
model = AutoModelForCausalLM.from_pretrained(model_id)
|
11 |
+
return pipeline("text-generation", model=model, tokenizer=tokenizer)
|
12 |
+
|
13 |
+
generator = load_model()
|
14 |
+
|
15 |
+
# β
Set Streamlit page configuration
|
16 |
+
st.title("π©Ί HealthAI β Intelligent Healthcare Assistant")
|
17 |
+
|
18 |
+
# β
Define tabs
|
19 |
+
tab1, tab2, tab3, tab4 = st.tabs([
|
20 |
+
"π§ Patient Chat", "π§Ύ Disease Prediction",
|
21 |
+
"π Treatment Plans", "π Health Analytics"
|
22 |
+
])
|
23 |
+
|
24 |
+
# ------------------------------
|
25 |
+
# π§ TAB 1: Patient Chat
|
26 |
+
# ------------------------------
|
27 |
+
with tab1:
|
28 |
+
st.subheader("Ask any health-related question")
|
29 |
+
query = st.text_area("Enter your question here")
|
30 |
+
|
31 |
+
if st.button("Get Advice", key="chat"):
|
32 |
+
if query.strip() == "":
|
33 |
+
st.warning("Please enter a question.")
|
34 |
else:
|
35 |
+
with st.spinner("Thinking..."):
|
36 |
+
response = generator(query, max_new_tokens=200)[0]["generated_text"]
|
37 |
+
st.success("AI Response:")
|
38 |
+
st.markdown(f"markdown\n{response}\n")
|
39 |
+
|
40 |
+
# ------------------------------
|
41 |
+
# π§Ύ TAB 2: Disease Prediction
|
42 |
+
# ------------------------------
|
43 |
+
with tab2:
|
44 |
+
st.subheader("Enter your symptoms (comma-separated)")
|
45 |
+
symptoms = st.text_input("E.g. persistent fever, fatigue, dry cough")
|
46 |
+
|
47 |
+
if st.button("AI Diagnose", key="predict"):
|
48 |
+
if symptoms.strip() == "":
|
49 |
+
st.warning("Please enter your symptoms.")
|
50 |
else:
|
51 |
+
prompt = (
|
52 |
+
f"I am feeling unwell. My symptoms are: {symptoms}.\n"
|
53 |
+
"Can you please suggest what possible conditions I might have based on this?\n"
|
54 |
+
"List top 3 possible diseases with a short reason for each, and give a seriousness score out of 10."
|
55 |
+
)
|
56 |
+
with st.spinner("Analyzing symptoms..."):
|
57 |
+
result = generator(prompt, max_new_tokens=300, do_sample=True)[0]['generated_text']
|
58 |
+
st.success("AI Prediction:")
|
59 |
+
st.markdown(f"markdown\n{result}\n")
|
60 |
+
|
61 |
+
# ------------------------------
|
62 |
+
# π TAB 3: Treatment Plans
|
63 |
+
# ------------------------------
|
64 |
+
with tab3:
|
65 |
+
st.header("π Treatment Plan Generator")
|
66 |
+
condition = st.text_input("Enter the known condition (e.g., Asthma, Diabetes)")
|
67 |
+
|
68 |
+
if st.button("Get Full Treatment Plan"):
|
69 |
+
if not condition.strip():
|
70 |
+
st.warning("Please enter a condition.")
|
71 |
+
else:
|
72 |
+
with st.spinner("Generating treatment plan..."):
|
73 |
+
|
74 |
+
def get_response(prompt):
|
75 |
+
return generator(prompt, max_new_tokens=1000, temperature=0.7, do_sample=True)[0]['generated_text'].strip()
|
76 |
+
|
77 |
+
prompts = {
|
78 |
+
"1οΈβ£ Medications": f"What medications are usually prescribed for {condition}?",
|
79 |
+
"2οΈβ£ Diet": f"What diet is recommended for someone with {condition}?",
|
80 |
+
"3οΈβ£ Exercise": f"What type of physical activities should a person with {condition} follow?",
|
81 |
+
"4οΈβ£ Follow-Up & Monitoring": f"What follow-up steps and monitoring should be done for {condition}?",
|
82 |
+
"5οΈβ£ Precautions": f"What precautions should be taken by someone with {condition}?",
|
83 |
+
"6οΈβ£ Mental Health & Stress": f"How can someone with {condition} manage stress and mental health?"
|
84 |
+
}
|
85 |
+
|
86 |
+
for section, prompt in prompts.items():
|
87 |
+
st.subheader(section)
|
88 |
+
st.markdown(f"markdown\n{get_response(prompt)}\n")
|
89 |
+
|
90 |
+
# ------------------------------
|
91 |
+
# π TAB 4: Health Analytics
|
92 |
+
# ------------------------------
|
93 |
+
with tab4:
|
94 |
+
st.subheader("Track your health data over time")
|
95 |
+
uploaded = st.file_uploader("Upload your CSV file (with columns like 'blood_pressure', 'heart_rate')", type=["csv"])
|
96 |
+
|
97 |
+
if uploaded:
|
98 |
+
df = pd.read_csv(uploaded)
|
99 |
+
st.dataframe(df)
|
100 |
+
|
101 |
+
for col in df.select_dtypes(include=['float', 'int']).columns:
|
102 |
+
st.line_chart(df[col])
|
103 |
+
if df[col].mean() > df[col].iloc[-1]:
|
104 |
+
st.info(f"π {col} is improving.")
|
105 |
+
else:
|
106 |
+
st.warning(f"π {col} is rising β consider medical advice.")
|