Spaces:
Sleeping
Sleeping
File size: 3,694 Bytes
69ca979 d34bd39 69ca979 d34bd39 d6bd89c d34bd39 d6bd89c d34bd39 69ca979 d34bd39 69ca979 d34bd39 69ca979 d34bd39 69ca979 d34bd39 69ca979 d34bd39 69ca979 d34bd39 69ca979 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 |
import streamlit as st
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from salesforce_integration import fetch_poles
# Title
st.title("π‘ VIEP Smart Poles Dashboard")
# Fetch data
df = fetch_poles()
# Sidebar Filters
st.sidebar.header("π Filter Data")
# Dynamic values from Salesforce data
alert_levels = df["Alert_Level__c"].dropna().unique().tolist()
sites = df["Site__c"].dropna().unique().tolist()
camera_statuses = df["Camera_Status__c"].dropna().unique().tolist()
selected_alert_levels = st.sidebar.multiselect("Alert Level", alert_levels, default=alert_levels)
selected_camera_status = st.sidebar.selectbox("Camera Status", ["All"] + camera_statuses)
# Initial filtering by alert level and camera status
filtered_df = df[
(df["Alert_Level__c"].isin(selected_alert_levels))
]
if selected_camera_status != "All":
filtered_df = filtered_df[filtered_df["Camera_Status__c"] == selected_camera_status]
# Site filter logic (place here)
site_options = ["All"] + df["Site__c"].dropna().unique().tolist()
selected_site = st.sidebar.selectbox("Site", site_options, index=0)
if selected_site != "All":
filtered_df = filtered_df[filtered_df["Site__c"] == selected_site]
# Site filter logic (place here)
if selected_site != "All":
filtered_df = filtered_df[filtered_df["Site__c"] == selected_site]
# --- System Summary ---
st.subheader("π System Summary")
col1, col2, col3 = st.columns(3)
col1.metric("Total Poles", len(filtered_df))
col2.metric("Red Alerts", len(filtered_df[filtered_df["Alert_Level__c"] == "Red"]))
col3.metric("Offline Cameras", len(filtered_df[filtered_df["Camera_Status__c"] == "Offline"]))
# --- Pole Table ---
st.subheader("π Pole Table")
st.dataframe(filtered_df, use_container_width=True)
# --- Energy Generation Chart ---
st.subheader("β Energy Generation (Solar vs Wind)")
if not filtered_df.empty:
energy_chart = px.bar(
filtered_df,
x="Name",
y=["Solar_Generation__c", "Wind_Generation__c"],
barmode="group",
title="Solar vs Wind Energy Generation"
)
st.plotly_chart(energy_chart, use_container_width=True)
else:
st.info("No data available for the selected filters.")
# --- Alert Level Breakdown ---
st.subheader("π¨ Alert Level Breakdown")
if not filtered_df.empty:
alert_counts = filtered_df["Alert_Level__c"].value_counts().reset_index()
alert_counts.columns = ["Alert Level", "Count"]
alert_pie = px.pie(alert_counts, values="Count", names="Alert Level", title="Alert Distribution")
st.plotly_chart(alert_pie, use_container_width=True)
else:
st.info("No alerts to display.")
# 5. Tilt vs Vibration Chart
st.subheader("π Tilt vs Vibration")
# Extract Tilt and Vibration from RFID_Tag__c
filtered_df["Tilt"] = filtered_df["RFID_Tag__c"].str.extract(r'Tilt:(\d+\.?\d*)').astype(float)
filtered_df["Vibration"] = filtered_df["RFID_Tag__c"].str.extract(r'Vib:(\d+\.?\d*)').astype(float)
# Drop rows with no tilt or vibration data
tilt_vib_df = filtered_df.dropna(subset=["Tilt", "Vibration"])
if not tilt_vib_df.empty:
fig_tilt_vib = go.Figure()
fig_tilt_vib.add_trace(go.Scatter(
x=tilt_vib_df["Name"],
y=tilt_vib_df["Tilt"],
mode='lines+markers',
name='Tilt'
))
fig_tilt_vib.add_trace(go.Scatter(
x=tilt_vib_df["Name"],
y=tilt_vib_df["Vibration"],
mode='lines+markers',
name='Vibration'
))
fig_tilt_vib.update_layout(title="Tilt vs Vibration by Pole", xaxis_title="Pole Name", yaxis_title="Value")
st.plotly_chart(fig_tilt_vib, use_container_width=True)
else:
st.info("No Tilt or Vibration data available.")
|