File size: 5,918 Bytes
452a698
eae54a4
26663dd
eae54a4
26663dd
eae54a4
 
26663dd
 
 
 
 
 
 
 
 
45b9fd5
 
26663dd
 
eae54a4
45b9fd5
eae54a4
 
 
45b9fd5
eae54a4
 
 
26663dd
78b0fae
eae54a4
26663dd
 
 
 
 
 
 
 
 
eae54a4
45b9fd5
26663dd
452a698
9d95b96
 
 
 
452a698
 
 
 
226383e
452a698
 
 
226383e
 
 
452a698
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d95b96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
'''import cv2
import numpy as np
import torch
import streamlit as st
from ultralytics import YOLO
from camera_input_live import camera_input_live

# Load YOLO fire detection model
model_path = "last.pt"
if not torch.cuda.is_available():
    device = "cpu"
else:
    device = "cuda"

model = YOLO(model_path)
model.to(device)

# Streamlit app title
st.title("Live Fire Detection with Camera")
st.subheader("Hold the camera towards potential fire sources to detect in real-time.")

# Capture live camera input
image = camera_input_live()

if image is not None:
    # Convert the image to OpenCV format
    bytes_data = image.getvalue()
    cv2_img = cv2.imdecode(np.frombuffer(bytes_data, np.uint8), cv2.IMREAD_COLOR)

    # Perform fire detection
    results = model(cv2_img)

    # Draw bounding boxes for detected fires
    for result in results:
        boxes = result.boxes
        for box in boxes:
            b = box.xyxy[0].cpu().numpy().astype(int)
            c = int(box.cls[0])
            label = f'Fire {box.conf[0]:.2f}'
            cv2.rectangle(cv2_img, (b[0], b[1]), (b[2], b[3]), (0, 0, 255), 3)
            cv2.putText(cv2_img, label, (b[0], b[1] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 0, 255), 2)

    # Display the annotated image
    st.image(cv2_img, channels="BGR", caption="Detected Fire", use_container_width=True)
'''



'''import cv2
import numpy as np
import torch
import streamlit as st
import pygame
import os
from ultralytics import YOLO
from camera_input_live import camera_input_live

# Set environment variable to use dummy audio on Hugging Face Spaces
os.environ["SDL_AUDIODRIVER"] = "dummy"

# Initialize Pygame mixer for audio alarm
pygame.mixer.init()
alarm_sound = "alarm.mp3"  # Ensure you have an alarm.mp3 file in your directory

# Load YOLO fire detection model
model_path = "last.pt"
device = "cuda" if torch.cuda.is_available() else "cpu"

model = YOLO(model_path)
model.to(device)

# Streamlit app title
st.title("Live Fire Detection with Camera")
st.subheader("Hold the camera towards potential fire sources to detect in real-time.")

# Capture live camera input
image = camera_input_live()
fire_detected = False  # Track fire detection state

if image is not None:
    # Convert the image to OpenCV format
    bytes_data = image.getvalue()
    cv2_img = cv2.imdecode(np.frombuffer(bytes_data, np.uint8), cv2.IMREAD_COLOR)

    # Perform fire detection
    results = model(cv2_img)

    fire_present = False  # Temporary flag for fire detection in this frame
    
    # Draw bounding boxes for detected fires
    for result in results:
        boxes = result.boxes
        for box in boxes:
            b = box.xyxy[0].cpu().numpy().astype(int)
            label = f'Fire {box.conf[0]:.2f}'
            cv2.rectangle(cv2_img, (b[0], b[1]), (b[2], b[3]), (0, 0, 255), 3)
            cv2.putText(cv2_img, label, (b[0], b[1] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 0, 255), 2)
            fire_present = True  # Fire detected
    
    # Display the annotated image
    st.image(cv2_img, channels="BGR", caption="Detected Fire", use_container_width=True)
    
    # Display logs
    if fire_present:
        st.error("🔥 Fire Detected! 🔥")
        if not fire_detected:  # Play alarm if not already playing
            pygame.mixer.music.load(alarm_sound)
            pygame.mixer.music.play(-1)  # Loop indefinitely
        fire_detected = True  # Update fire status
    else:
        st.success("✅ No Fire Detected")
        if fire_detected:
            pygame.mixer.music.stop()  # Stop alarm
        fire_detected = False
        '''
import cv2
import numpy as np
import torch
import streamlit as st
import os
from ultralytics import YOLO
from camera_input_live import camera_input_live

# Load YOLO fire detection model
model_path = "last.pt"
device = "cuda" if torch.cuda.is_available() else "cpu"
model = YOLO(model_path)
model.to(device)

# Streamlit app title
st.title("Live Fire Detection with Camera")
st.subheader("Hold the camera towards potential fire sources to detect in real-time.")

# Capture live camera input
image = camera_input_live()
fire_detected = False  # Track fire detection state

# HTML & JS for Alarm Sound
alarm_html = """
<audio id="fireAlarm" src="alarm.mp3"></audio>
<script>
    function playAlarm() {
        var alarm = document.getElementById("fireAlarm");
        if (alarm.paused) {
            alarm.play();
        }
    }
    function stopAlarm() {
        var alarm = document.getElementById("fireAlarm");
        alarm.pause();
        alarm.currentTime = 0;
    }
</script>
"""

if image is not None:
    # Convert the image to OpenCV format
    bytes_data = image.getvalue()
    cv2_img = cv2.imdecode(np.frombuffer(bytes_data, np.uint8), cv2.IMREAD_COLOR)

    # Perform fire detection
    results = model(cv2_img)

    fire_present = False  # Temporary flag for fire detection in this frame
    
    # Draw bounding boxes for detected fires
    for result in results:
        boxes = result.boxes
        for box in boxes:
            b = box.xyxy[0].cpu().numpy().astype(int)
            label = f'Fire {box.conf[0]:.2f}'
            cv2.rectangle(cv2_img, (b[0], b[1]), (b[2], b[3]), (0, 0, 255), 3)
            cv2.putText(cv2_img, label, (b[0], b[1] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 0, 255), 2)
            fire_present = True  # Fire detected

    # Display the annotated image
    st.image(cv2_img, channels="BGR", caption="Detected Fire", use_container_width=True)
    
    # Display logs and trigger alarm
    if fire_present:
        st.error("🔥 Fire Detected! 🔥")
        st.markdown(alarm_html + "<script>playAlarm();</script>", unsafe_allow_html=True)
        fire_detected = True
    else:
        st.success("✅ No Fire Detected")
        if fire_detected:
            st.markdown(alarm_html + "<script>stopAlarm();</script>", unsafe_allow_html=True)
        fire_detected = False