Spaces:
Sleeping
Sleeping
import os | |
import pyaudio | |
import streamlit as st | |
from langchain.memory import ConversationBufferMemory | |
from utils import record_audio_chunk, transcribe_audio, get_response_llm, play_text_to_speech, load_whisper | |
chunk_file = 'temp_audio_chunk.wav' | |
model = load_whisper() | |
def main(): | |
st.markdown('<h1 style="color: darkblue;">AI Voice Assistant️</h1>', unsafe_allow_html=True) | |
memory = ConversationBufferMemory(memory_key="chat_history") | |
if st.button("Start Recording"): | |
while True: | |
# Audio Stream Initialization | |
audio = pyaudio.PyAudio() | |
stream = audio.open(format=pyaudio.paInt16, channels=1, rate=16000, input=True, frames_per_buffer=1024) | |
# Record and save audio chunk | |
record_audio_chunk(audio, stream) | |
text = transcribe_audio(model, chunk_file) | |
if text is not None: | |
st.markdown( | |
f'<div style="background-color: #f0f0f0; padding: 10px; border-radius: 5px;">Customer 👤: {text}</div>', | |
unsafe_allow_html=True) | |
os.remove(chunk_file) | |
response_llm = get_response_llm(user_question=text, memory=memory) | |
st.markdown( | |
f'<div style="background-color: #f0f0f0; padding: 10px; border-radius: 5px;">AI Assistant 🤖: {response_llm}</div>', | |
unsafe_allow_html=True) | |
play_text_to_speech(text=response_llm) | |
else: | |
stream.stop_stream() | |
stream.close() | |
audio.terminate() | |
break # Exit the while loop | |
print("End Conversation") | |
if __name__ == "__main__": | |
main() |