Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,217 +1,133 @@
|
|
1 |
import streamlit as st
|
2 |
-
from langchain.chains import RetrievalQA
|
3 |
-
from langchain.vectorstores import Milvus
|
4 |
-
from langchain.embeddings import HuggingFaceEmbeddings
|
5 |
-
from transformers import AutoTokenizer
|
6 |
-
from langchain_groq import ChatGroq
|
7 |
import os
|
8 |
-
from docling.document_converter import DocumentConverter, PdfFormatOption
|
9 |
-
from docling.datamodel.base_models import InputFormat
|
10 |
-
from docling.datamodel.pipeline_options import PdfPipelineOptions
|
11 |
-
from docling_core.transforms.chunker.hybrid_chunker import HybridChunker
|
12 |
-
from docling_core.types.doc.document import TableItem
|
13 |
-
from langchain_core.documents import Document
|
14 |
-
import itertools
|
15 |
-
from docling_core.types.doc.labels import DocItemLabel
|
16 |
-
import google.generativeai as genai
|
17 |
from PIL import Image
|
18 |
-
import
|
19 |
-
import
|
|
|
|
|
20 |
|
21 |
-
#
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
-
#
|
34 |
-
|
35 |
-
|
36 |
-
vision_model = genai.GenerativeModel(model_name="gemini-1.5-flash")
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
do_ocr=True,
|
44 |
-
generate_picture_images=True
|
45 |
)
|
46 |
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
sources = [file_path]
|
53 |
-
conversions = {
|
54 |
-
source: converter.convert(source=source).document for source in sources
|
55 |
-
}
|
56 |
|
57 |
-
#
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
|
|
|
|
69 |
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
metadata={
|
76 |
-
"doc_id": (doc_id := doc_id + 1),
|
77 |
-
"source": source,
|
78 |
-
"ref": refs,
|
79 |
-
}
|
80 |
-
)
|
81 |
-
texts.append(document)
|
82 |
-
|
83 |
-
# Process tables (if any)
|
84 |
-
tables = []
|
85 |
-
for source, docling_document in conversions.items():
|
86 |
-
for table in docling_document.tables:
|
87 |
-
if table.label == DocItemLabel.TABLE:
|
88 |
-
ref = table.get_ref().cref
|
89 |
-
text = table.export_to_markdown()
|
90 |
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
"doc_id": (doc_id := doc_id + 1),
|
95 |
-
"source": source,
|
96 |
-
"ref": ref,
|
97 |
-
},
|
98 |
-
)
|
99 |
-
tables.append(document)
|
100 |
-
|
101 |
-
# Process images (if any)
|
102 |
-
pictures = []
|
103 |
-
start_doc_id = len(texts) + len(tables) + 1
|
104 |
-
|
105 |
-
for source, docling_document in conversions.items():
|
106 |
-
if hasattr(docling_document, 'pictures') and docling_document.pictures:
|
107 |
-
for picture in docling_document.pictures:
|
108 |
-
try:
|
109 |
-
ref = picture.get_ref().cref
|
110 |
-
image = picture.get_image(docling_document)
|
111 |
-
|
112 |
-
if image:
|
113 |
-
response = vision_model.generate_content([
|
114 |
-
"Extract all text and describe key visual elements in this image. "
|
115 |
-
"Include any numbers, labels, or important details.",
|
116 |
-
image
|
117 |
-
])
|
118 |
-
|
119 |
-
document = Document(
|
120 |
-
page_content=response.text,
|
121 |
-
metadata={
|
122 |
-
"doc_id": doc_id,
|
123 |
-
"source": source,
|
124 |
-
"ref": ref,
|
125 |
-
}
|
126 |
-
)
|
127 |
-
pictures.append(document)
|
128 |
-
doc_id += 1
|
129 |
-
except Exception as e:
|
130 |
-
print(f"Error processing image: {str(e)}")
|
131 |
-
|
132 |
-
return texts + tables + pictures
|
133 |
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
vector_store = Milvus.from_documents(
|
138 |
-
docs,
|
139 |
-
embeddings_model,
|
140 |
-
connection_args={"host": "127.0.0.1", "port": "19530"},
|
141 |
-
collection_name="pdf_manual"
|
142 |
-
)
|
143 |
-
return vector_store
|
144 |
|
145 |
-
|
146 |
-
st.
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
uploaded_file = st.file_uploader("Upload a PDF manual", type="pdf")
|
153 |
-
|
154 |
-
if uploaded_file is not None:
|
155 |
-
# Save the uploaded file
|
156 |
-
file_path = os.path.join("temp", uploaded_file.name)
|
157 |
-
os.makedirs("temp", exist_ok=True)
|
158 |
-
with open(file_path, "wb") as f:
|
159 |
-
f.write(uploaded_file.getbuffer())
|
160 |
-
|
161 |
-
# Process the PDF
|
162 |
-
with st.spinner("Processing PDF..."):
|
163 |
-
docs = process_pdf(file_path, embeddings_tokenizer, vision_model)
|
164 |
-
vector_store = create_vector_store(docs, embeddings_model)
|
165 |
-
|
166 |
-
st.success("PDF processed successfully!")
|
167 |
-
|
168 |
-
# Initialize chat history
|
169 |
-
if "messages" not in st.session_state:
|
170 |
-
st.session_state.messages = []
|
171 |
-
|
172 |
-
# Display chat messages from history on app rerun
|
173 |
-
for message in st.session_state.messages:
|
174 |
-
with st.chat_message(message["role"]):
|
175 |
-
st.markdown(message["content"])
|
176 |
-
|
177 |
-
# Accept user input
|
178 |
-
if prompt := st.chat_input("Ask a question about the manual"):
|
179 |
-
# Add user message to chat history
|
180 |
-
st.session_state.messages.append({"role": "user", "content": prompt})
|
181 |
-
|
182 |
-
# Display user message in chat message container
|
183 |
-
with st.chat_message("user"):
|
184 |
-
st.markdown(prompt)
|
185 |
|
186 |
-
#
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
return_source_documents=True
|
192 |
)
|
193 |
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
for i, doc in enumerate(source_docs):
|
208 |
-
st.write(f"Source {i+1}:")
|
209 |
-
st.write(doc.page_content)
|
210 |
-
st.write(f"Metadata: {doc.metadata}")
|
211 |
-
st.write("---")
|
212 |
|
213 |
-
#
|
214 |
-
|
|
|
|
|
|
|
215 |
|
216 |
-
|
217 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
2 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
from PIL import Image
|
4 |
+
import google.generativeai as genai
|
5 |
+
from utils.document_processing import process_pdf
|
6 |
+
from utils.models import load_models
|
7 |
+
from utils.rag import query_pipeline
|
8 |
|
9 |
+
# Configure the app
|
10 |
+
st.set_page_config(
|
11 |
+
page_title="PDF RAG Pipeline",
|
12 |
+
page_icon="📄",
|
13 |
+
layout="wide"
|
14 |
+
)
|
15 |
+
|
16 |
+
# Initialize session state
|
17 |
+
if 'models_loaded' not in st.session_state:
|
18 |
+
st.session_state.models_loaded = False
|
19 |
+
if 'processed_docs' not in st.session_state:
|
20 |
+
st.session_state.processed_docs = None
|
21 |
+
|
22 |
+
# Sidebar for configuration
|
23 |
+
with st.sidebar:
|
24 |
+
st.title("Configuration")
|
25 |
|
26 |
+
# API keys
|
27 |
+
groq_api_key = st.text_input("Groq API Key", type="password")
|
28 |
+
google_api_key = st.text_input("Google API Key", type="password")
|
|
|
29 |
|
30 |
+
# Model selection
|
31 |
+
embedding_model = st.selectbox(
|
32 |
+
"Embedding Model",
|
33 |
+
["ibm-granite/granite-embedding-30m-english"],
|
34 |
+
index=0
|
|
|
|
|
35 |
)
|
36 |
|
37 |
+
llm_model = st.selectbox(
|
38 |
+
"LLM Model",
|
39 |
+
["llama3-70b-8192"],
|
40 |
+
index=0
|
41 |
+
)
|
|
|
|
|
|
|
|
|
42 |
|
43 |
+
# File upload
|
44 |
+
uploaded_file = st.file_uploader(
|
45 |
+
"Upload a PDF file",
|
46 |
+
type=["pdf"],
|
47 |
+
accept_multiple_files=False
|
48 |
+
)
|
49 |
|
50 |
+
if st.button("Initialize Models"):
|
51 |
+
with st.spinner("Loading models..."):
|
52 |
+
try:
|
53 |
+
# Load models
|
54 |
+
embeddings_model, embeddings_tokenizer, vision_model, llm_model = load_models(
|
55 |
+
embedding_model=embedding_model,
|
56 |
+
llm_model=llm_model,
|
57 |
+
google_api_key=google_api_key,
|
58 |
+
groq_api_key=groq_api_key
|
59 |
+
)
|
60 |
|
61 |
+
st.session_state.embeddings_model = embeddings_model
|
62 |
+
st.session_state.embeddings_tokenizer = embeddings_tokenizer
|
63 |
+
st.session_state.vision_model = vision_model
|
64 |
+
st.session_state.llm_model = llm_model
|
65 |
+
st.session_state.models_loaded = True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
+
st.success("Models loaded successfully!")
|
68 |
+
except Exception as e:
|
69 |
+
st.error(f"Error loading models: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
+
# Main app interface
|
72 |
+
st.title("PDF RAG Pipeline")
|
73 |
+
st.write("Upload a PDF and ask questions about its content")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
+
if uploaded_file and st.session_state.models_loaded:
|
76 |
+
with st.spinner("Processing PDF..."):
|
77 |
+
try:
|
78 |
+
# Save uploaded file temporarily
|
79 |
+
file_path = f"./temp_{uploaded_file.name}"
|
80 |
+
with open(file_path, "wb") as f:
|
81 |
+
f.write(uploaded_file.getbuffer())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
+
# Process the PDF
|
84 |
+
texts, tables, pictures = process_pdf(
|
85 |
+
file_path,
|
86 |
+
st.session_state.embeddings_tokenizer,
|
87 |
+
st.session_state.vision_model
|
|
|
88 |
)
|
89 |
|
90 |
+
st.session_state.processed_docs = {
|
91 |
+
"texts": texts,
|
92 |
+
"tables": tables,
|
93 |
+
"pictures": pictures
|
94 |
+
}
|
95 |
|
96 |
+
st.success("PDF processed successfully!")
|
97 |
+
|
98 |
+
# Display document stats
|
99 |
+
col1, col2, col3 = st.columns(3)
|
100 |
+
col1.metric("Text Chunks", len(texts))
|
101 |
+
col2.metric("Tables", len(tables))
|
102 |
+
col3.metric("Images", len(pictures))
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
+
# Remove temp file
|
105 |
+
os.remove(file_path)
|
106 |
+
|
107 |
+
except Exception as e:
|
108 |
+
st.error(f"Error processing PDF: {str(e)}")
|
109 |
|
110 |
+
# Question answering section
|
111 |
+
if st.session_state.processed_docs:
|
112 |
+
st.divider()
|
113 |
+
st.subheader("Ask a Question")
|
114 |
+
|
115 |
+
question = st.text_input("Enter your question about the document:")
|
116 |
+
|
117 |
+
if question and st.button("Get Answer"):
|
118 |
+
with st.spinner("Generating answer..."):
|
119 |
+
try:
|
120 |
+
answer = query_pipeline(
|
121 |
+
question=question,
|
122 |
+
texts=st.session_state.processed_docs["texts"],
|
123 |
+
tables=st.session_state.processed_docs["tables"],
|
124 |
+
pictures=st.session_state.processed_docs["pictures"],
|
125 |
+
embeddings_model=st.session_state.embeddings_model,
|
126 |
+
llm_model=st.session_state.llm_model
|
127 |
+
)
|
128 |
+
|
129 |
+
st.subheader("Answer")
|
130 |
+
st.write(answer)
|
131 |
+
|
132 |
+
except Exception as e:
|
133 |
+
st.error(f"Error generating answer: {str(e)}")
|