Spaces:
Sleeping
Sleeping
Create models.py
Browse files- utils/models.py +39 -0
utils/models.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
2 |
+
from transformers import AutoTokenizer
|
3 |
+
from langchain_groq import ChatGroq
|
4 |
+
import google.generativeai as genai
|
5 |
+
|
6 |
+
def load_models(embedding_model="ibm-granite/granite-embedding-30m-english",
|
7 |
+
llm_model="llama3-70b-8192",
|
8 |
+
google_api_key=None,
|
9 |
+
groq_api_key=None):
|
10 |
+
"""
|
11 |
+
Load all required models.
|
12 |
+
|
13 |
+
Args:
|
14 |
+
embedding_model: Name/path of the embedding model
|
15 |
+
llm_model: Name of the LLM model
|
16 |
+
google_api_key: API key for Google Gemini
|
17 |
+
groq_api_key: API key for Groq
|
18 |
+
|
19 |
+
Returns:
|
20 |
+
tuple: (embeddings_model, embeddings_tokenizer, vision_model, llm_model)
|
21 |
+
"""
|
22 |
+
# Load embedding model and tokenizer
|
23 |
+
embeddings_model = HuggingFaceEmbeddings(model_name=embedding_model)
|
24 |
+
embeddings_tokenizer = AutoTokenizer.from_pretrained(embedding_model)
|
25 |
+
|
26 |
+
# Initialize Gemini vision model
|
27 |
+
if google_api_key:
|
28 |
+
genai.configure(api_key=google_api_key)
|
29 |
+
vision_model = genai.GenerativeModel(model_name="gemini-1.5-flash")
|
30 |
+
else:
|
31 |
+
vision_model = None
|
32 |
+
|
33 |
+
# Initialize Groq LLM
|
34 |
+
if groq_api_key:
|
35 |
+
llm_model = ChatGroq(model_name=llm_model, api_key=groq_api_key)
|
36 |
+
else:
|
37 |
+
llm_model = None
|
38 |
+
|
39 |
+
return embeddings_model, embeddings_tokenizer, vision_model, llm_model
|