Update app.py
Browse files
app.py
CHANGED
@@ -1,135 +1,32 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
import os
|
4 |
-
import pickle
|
5 |
-
import torch
|
6 |
-
import matplotlib.pyplot as plt
|
7 |
-
from langchain_community.document_loaders import TextLoader
|
8 |
-
from datasets import load_dataset
|
9 |
-
from sentence_transformers import SentenceTransformer, util
|
10 |
-
from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
11 |
-
from transformers import BertModel, BertTokenizer
|
12 |
-
from langchain_core.prompts import PromptTemplate
|
13 |
import streamlit as st
|
|
|
14 |
from PIL import Image
|
15 |
import numpy as np
|
16 |
-
import
|
|
|
17 |
from tensorflow.keras.preprocessing import image
|
18 |
from tensorflow.keras.layers import GlobalMaxPooling2D
|
19 |
from tensorflow.keras.applications.resnet50 import ResNet50, preprocess_input
|
20 |
from sklearn.neighbors import NearestNeighbors
|
21 |
from numpy.linalg import norm
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
You are a fashion shopping assistant that wants to convert customers based on the information given.
|
41 |
-
Describe season and usage given in the context in your interaction with the customer.
|
42 |
-
Use a bullet list when describing each product.
|
43 |
-
If user ask general question then answer them accordingly, the question may be like when the store will open, where is your store located.
|
44 |
-
Context: {context}
|
45 |
-
User question: {question}
|
46 |
-
Your response: {response}
|
47 |
-
"""
|
48 |
-
self.prompt = PromptTemplate.from_template(self.template)
|
49 |
-
|
50 |
-
def load_models(self):
|
51 |
-
self.model = SentenceTransformer('clip-ViT-B-32')
|
52 |
-
self.bert_model_name = "bert-base-uncased"
|
53 |
-
self.bert_model = BertModel.from_pretrained(self.bert_model_name)
|
54 |
-
self.bert_tokenizer = BertTokenizer.from_pretrained(self.bert_model_name)
|
55 |
-
self.gpt2_model_name = "gpt2"
|
56 |
-
self.gpt2_model = GPT2LMHeadModel.from_pretrained(self.gpt2_model_name)
|
57 |
-
self.gpt2_tokenizer = GPT2Tokenizer.from_pretrained(self.gpt2_model_name)
|
58 |
-
|
59 |
-
def load_embeddings(self):
|
60 |
-
if os.path.exists("embeddings_cache.pkl"):
|
61 |
-
with open("embeddings_cache.pkl", "rb") as f:
|
62 |
-
embeddings_cache = pickle.load(f)
|
63 |
-
self.image_embeddings = embeddings_cache["image_embeddings"]
|
64 |
-
self.text_embeddings = embeddings_cache["text_embeddings"]
|
65 |
-
else:
|
66 |
-
self.image_embeddings = self.model.encode([image for image in self.images])
|
67 |
-
self.text_embeddings = self.model.encode(self.product_frame['productDisplayName'])
|
68 |
-
embeddings_cache = {"image_embeddings": self.image_embeddings, "text_embeddings": self.text_embeddings}
|
69 |
-
with open("embeddings_cache.pkl", "wb") as f:
|
70 |
-
pickle.dump(embeddings_cache, f)
|
71 |
-
|
72 |
-
def create_docs(self, results):
|
73 |
-
docs = []
|
74 |
-
for result in results:
|
75 |
-
pid = result['corpus_id']
|
76 |
-
score = result['score']
|
77 |
-
result_string = ''
|
78 |
-
result_string += "Product Name:" + self.product_data[pid]['productDisplayName'] + \
|
79 |
-
';' + "Category:" + self.product_data[pid]['masterCategory'] + \
|
80 |
-
';' + "Article Type:" + self.product_data[pid]['articleType'] + \
|
81 |
-
';' + "Usage:" + self.product_data[pid]['usage'] + \
|
82 |
-
';' + "Season:" + self.product_data[pid]['season'] + \
|
83 |
-
';' + "Gender:" + self.product_data[pid]['gender']
|
84 |
-
# Assuming text is imported from somewhere else
|
85 |
-
doc = TextLoader(page_content=result_string)
|
86 |
-
doc.metadata['pid'] = str(pid)
|
87 |
-
doc.metadata['score'] = score
|
88 |
-
docs.append(doc)
|
89 |
-
return docs
|
90 |
-
|
91 |
-
def get_results(self, query, embeddings, top_k=10):
|
92 |
-
query_embedding = self.model.encode([query])
|
93 |
-
cos_scores = util.pytorch_cos_sim(query_embedding, embeddings)[0]
|
94 |
-
top_results = torch.topk(cos_scores, k=top_k)
|
95 |
-
indices = top_results.indices.tolist()
|
96 |
-
scores = top_results.values.tolist()
|
97 |
-
results = [{'corpus_id': idx, 'score': score} for idx, score in zip(indices, scores)]
|
98 |
-
return results
|
99 |
-
|
100 |
-
def display_text_and_images(self, results_text):
|
101 |
-
for result in results_text:
|
102 |
-
pid = result['corpus_id']
|
103 |
-
product_info = self.product_data[pid]
|
104 |
-
print("Product Name:", product_info['productDisplayName'])
|
105 |
-
print("Category:", product_info['masterCategory'])
|
106 |
-
print("Article Type:", product_info['articleType'])
|
107 |
-
print("Usage:", product_info['usage'])
|
108 |
-
print("Season:", product_info['season'])
|
109 |
-
print("Gender:", product_info['gender'])
|
110 |
-
print("Score:", result['score'])
|
111 |
-
plt.imshow(self.images[pid])
|
112 |
-
plt.axis('off')
|
113 |
-
plt.show()
|
114 |
-
|
115 |
-
@staticmethod
|
116 |
-
def cos_sim(a, b):
|
117 |
-
a_norm = torch.nn.functional.normalize(a, p=2, dim=1)
|
118 |
-
b_norm = torch.nn.functional.normalize(b, p=2, dim=1)
|
119 |
-
return torch.mm(a_norm.T, b_norm) # Reshape a_norm to (768, 1)
|
120 |
-
|
121 |
-
def generate_response(self, query):
|
122 |
-
# Process the user query and generate a response
|
123 |
-
results_text = self.get_results(query, self.text_embeddings)
|
124 |
-
|
125 |
-
# Generate chatbot response
|
126 |
-
chatbot_response = "This is a placeholder response from the chatbot." # Placeholder, replace with actual response
|
127 |
-
|
128 |
-
# Display recommended products
|
129 |
-
self.display_text_and_images(results_text)
|
130 |
-
|
131 |
-
# Return both chatbot response and recommended products
|
132 |
-
return chatbot_response, results_text
|
133 |
|
134 |
# Function to save uploaded file
|
135 |
def save_uploaded_file(uploaded_file):
|
@@ -147,13 +44,13 @@ def show_dashboard():
|
|
147 |
# Load ResNet model for image feature extraction
|
148 |
model = ResNet50(weights='imagenet', include_top=False, input_shape=(224, 224, 3))
|
149 |
model.trainable = False
|
150 |
-
model =
|
151 |
model,
|
152 |
GlobalMaxPooling2D()
|
153 |
])
|
154 |
|
155 |
feature_list = np.array(pickle.load(open('embeddings.pkl', 'rb')))
|
156 |
-
|
157 |
|
158 |
# File upload section
|
159 |
uploaded_file = st.file_uploader("Choose an image")
|
@@ -169,19 +66,18 @@ def show_dashboard():
|
|
169 |
# Recommendation
|
170 |
indices = recommend(features, feature_list)
|
171 |
|
172 |
-
# Display recommended products
|
173 |
-
st.
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
st.write("Gender:", product_info['gender'])
|
185 |
|
186 |
else:
|
187 |
st.header("Some error occurred in file upload")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
import os
|
3 |
from PIL import Image
|
4 |
import numpy as np
|
5 |
+
import pickle
|
6 |
+
import tensorflow
|
7 |
from tensorflow.keras.preprocessing import image
|
8 |
from tensorflow.keras.layers import GlobalMaxPooling2D
|
9 |
from tensorflow.keras.applications.resnet50 import ResNet50, preprocess_input
|
10 |
from sklearn.neighbors import NearestNeighbors
|
11 |
from numpy.linalg import norm
|
12 |
+
from chatbot import Chatbot # Assuming you have a chatbot module
|
13 |
+
|
14 |
+
# Define function for feature extraction
|
15 |
+
def feature_extraction(img_path, model):
|
16 |
+
img = image.load_img(img_path, target_size=(224, 224))
|
17 |
+
img_array = image.img_to_array(img)
|
18 |
+
expanded_img_array = np.expand_dims(img_array, axis=0)
|
19 |
+
preprocessed_img = preprocess_input(expanded_img_array)
|
20 |
+
result = model.predict(preprocessed_img).flatten()
|
21 |
+
normalized_result = result / norm(result)
|
22 |
+
return normalized_result
|
23 |
+
|
24 |
+
# Define function for recommendation
|
25 |
+
def recommend(features, feature_list):
|
26 |
+
neighbors = NearestNeighbors(n_neighbors=6, algorithm='brute', metric='euclidean')
|
27 |
+
neighbors.fit(feature_list)
|
28 |
+
distances, indices = neighbors.kneighbors([features])
|
29 |
+
return indices
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
# Function to save uploaded file
|
32 |
def save_uploaded_file(uploaded_file):
|
|
|
44 |
# Load ResNet model for image feature extraction
|
45 |
model = ResNet50(weights='imagenet', include_top=False, input_shape=(224, 224, 3))
|
46 |
model.trainable = False
|
47 |
+
model = tensorflow.keras.Sequential([
|
48 |
model,
|
49 |
GlobalMaxPooling2D()
|
50 |
])
|
51 |
|
52 |
feature_list = np.array(pickle.load(open('embeddings.pkl', 'rb')))
|
53 |
+
filenames = pickle.load(open('filenames.pkl', 'rb'))
|
54 |
|
55 |
# File upload section
|
56 |
uploaded_file = st.file_uploader("Choose an image")
|
|
|
66 |
# Recommendation
|
67 |
indices = recommend(features, feature_list)
|
68 |
|
69 |
+
# Display recommended products
|
70 |
+
col1, col2, col3, col4, col5 = st.columns(5)
|
71 |
+
with col1:
|
72 |
+
st.image(filenames[indices[0][0]])
|
73 |
+
with col2:
|
74 |
+
st.image(filenames[indices[0][1]])
|
75 |
+
with col3:
|
76 |
+
st.image(filenames[indices[0][2]])
|
77 |
+
with col4:
|
78 |
+
st.image(filenames[indices[0][3]])
|
79 |
+
with col5:
|
80 |
+
st.image(filenames[indices[0][4]])
|
|
|
81 |
|
82 |
else:
|
83 |
st.header("Some error occurred in file upload")
|