Delete test.py
Browse files
test.py
DELETED
@@ -1,48 +0,0 @@
|
|
1 |
-
import pickle
|
2 |
-
import tensorflow
|
3 |
-
import numpy as np
|
4 |
-
from numpy.linalg import norm
|
5 |
-
from tensorflow.keras.preprocessing import image
|
6 |
-
from tensorflow.keras.layers import GlobalMaxPooling2D
|
7 |
-
from tensorflow.keras.applications.resnet50 import ResNet50, preprocess_input
|
8 |
-
from sklearn.neighbors import NearestNeighbors
|
9 |
-
import cv2
|
10 |
-
|
11 |
-
# Load the precomputed feature vectors and filenames from pickle files
|
12 |
-
feature_list = np.array(pickle.load(open('embeddings.pkl', 'rb')))
|
13 |
-
filenames = pickle.load(open('filenames.pkl', 'rb'))
|
14 |
-
|
15 |
-
# Load ResNet50 model without the top layer for feature extraction
|
16 |
-
model = ResNet50(weights='imagenet', include_top=False, input_shape=(224, 224, 3))
|
17 |
-
model.trainable = False
|
18 |
-
|
19 |
-
# Create a Sequential model with ResNet50 and GlobalMaxPooling2D layers
|
20 |
-
model = tensorflow.keras.Sequential([
|
21 |
-
model,
|
22 |
-
GlobalMaxPooling2D()
|
23 |
-
])
|
24 |
-
|
25 |
-
# Load and preprocess the query image
|
26 |
-
img = image.load_img('sample/khade.jpg', target_size=(224, 224))
|
27 |
-
img_array = image.img_to_array(img)
|
28 |
-
expanded_img_array = np.expand_dims(img_array, axis=0)
|
29 |
-
preprocessed_img = preprocess_input(expanded_img_array)
|
30 |
-
|
31 |
-
# Extract features from the query image and normalize
|
32 |
-
result = model.predict(preprocessed_img).flatten()
|
33 |
-
normalized_result = result / norm(result)
|
34 |
-
|
35 |
-
# Initialize NearestNeighbors model and fit with the feature vectors
|
36 |
-
neighbors = NearestNeighbors(n_neighbors=6, algorithm='brute', metric='euclidean')
|
37 |
-
neighbors.fit(feature_list)
|
38 |
-
|
39 |
-
# Find the nearest neighbors (excluding itself)
|
40 |
-
distances, indices = neighbors.kneighbors([normalized_result])
|
41 |
-
|
42 |
-
print(indices) # Print the indices of nearest neighbors
|
43 |
-
|
44 |
-
# Display the nearest neighbor images
|
45 |
-
for file in indices[0][0:5]:
|
46 |
-
temp_img = cv2.imread(filenames[file])
|
47 |
-
cv2.imshow('output', cv2.resize(temp_img, (312, 312)))
|
48 |
-
cv2.waitKey(0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|