File size: 1,712 Bytes
791a72e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import os

import pyaudio
import streamlit as st
from langchain.memory import ConversationBufferMemory

from utils import record_audio_chunk, transcribe_audio, get_response_llm, play_text_to_speech, load_whisper

chunk_file = 'temp_audio_chunk.wav'
model = load_whisper()
def main():
    st.markdown('<h1 style="color: darkblue;">AI Voice Assistant️</h1>', unsafe_allow_html=True)

    memory = ConversationBufferMemory(memory_key="chat_history")

    if st.button("Start Recording"):
        while True:
            # Audio Stream Initialization
            audio = pyaudio.PyAudio()
            stream = audio.open(format=pyaudio.paInt16, channels=1, rate=16000, input=True, frames_per_buffer=1024)

            # Record and save audio chunk
            record_audio_chunk(audio, stream)

            text = transcribe_audio(model, chunk_file)

            if text is not None:
                st.markdown(
                    f'<div style="background-color: #f0f0f0; padding: 10px; border-radius: 5px;">Customer 👤: {text}</div>',
                    unsafe_allow_html=True)

                os.remove(chunk_file)

                response_llm = get_response_llm(user_question=text, memory=memory)
                st.markdown(
                    f'<div style="background-color: #f0f0f0; padding: 10px; border-radius: 5px;">AI Assistant 🤖: {response_llm}</div>',
                    unsafe_allow_html=True)

                play_text_to_speech(text=response_llm)
            else:
                stream.stop_stream()
                stream.close()
                audio.terminate()
                break  # Exit the while loop
        print("End Conversation")



if __name__ == "__main__":
    main()