Create utils.py
Browse files
utils.py
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from dotenv import load_dotenv
|
3 |
+
|
4 |
+
import wave
|
5 |
+
import pyaudio
|
6 |
+
from scipy.io import wavfile
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
import whisper
|
10 |
+
|
11 |
+
from langchain.chains.llm import LLMChain
|
12 |
+
from langchain_core.prompts import PromptTemplate
|
13 |
+
from langchain_groq import ChatGroq
|
14 |
+
|
15 |
+
from gtts import gTTS
|
16 |
+
import pygame
|
17 |
+
|
18 |
+
|
19 |
+
load_dotenv()
|
20 |
+
|
21 |
+
groq_api_key = os.getenv("GROQ_API_KEY")
|
22 |
+
|
23 |
+
|
24 |
+
def is_silence(data, max_amplitude_threshold=3000):
|
25 |
+
"""Check if audio data contains silence."""
|
26 |
+
# Find the maximum absolute amplitude in the audio data
|
27 |
+
max_amplitude = np.max(np.abs(data))
|
28 |
+
return max_amplitude <= max_amplitude_threshold
|
29 |
+
|
30 |
+
|
31 |
+
def record_audio_chunk(audio, stream, chunk_length=5):
|
32 |
+
print("Recording...")
|
33 |
+
frames = []
|
34 |
+
# Calculate the number of chunks needed for the specified length of recording
|
35 |
+
# 16000 Hertz -> sufficient for capturing the human voice
|
36 |
+
# 1024 frames -> the higher, the higher the latency
|
37 |
+
num_chunks = int(16000 / 1024 * chunk_length)
|
38 |
+
|
39 |
+
# Record the audio data in chunks
|
40 |
+
for _ in range(num_chunks):
|
41 |
+
data = stream.read(1024)
|
42 |
+
frames.append(data)
|
43 |
+
|
44 |
+
temp_file_path = './temp_audio_chunk.wav'
|
45 |
+
print("Writing...")
|
46 |
+
with wave.open(temp_file_path, 'wb') as wf:
|
47 |
+
wf.setnchannels(1) # Mono channel
|
48 |
+
wf.setsampwidth(audio.get_sample_size(pyaudio.paInt16)) # Sample width
|
49 |
+
wf.setframerate(16000) # Sample rate
|
50 |
+
wf.writeframes(b''.join(frames)) # Write audio frames
|
51 |
+
|
52 |
+
# Check if the recorded chunk contains silence
|
53 |
+
try:
|
54 |
+
samplerate, data = wavfile.read(temp_file_path)
|
55 |
+
if is_silence(data):
|
56 |
+
os.remove(temp_file_path)
|
57 |
+
return True
|
58 |
+
else:
|
59 |
+
return False
|
60 |
+
except Exception as e:
|
61 |
+
print(f"Error while reading audio file: {e}")
|
62 |
+
|
63 |
+
|
64 |
+
def load_whisper():
|
65 |
+
model = whisper.load_model("base")
|
66 |
+
return model
|
67 |
+
|
68 |
+
|
69 |
+
def transcribe_audio(model, file_path):
|
70 |
+
print("Transcribing...")
|
71 |
+
# Print all files in the current directory
|
72 |
+
print("Current directory files:", os.listdir())
|
73 |
+
if os.path.isfile(file_path):
|
74 |
+
results = model.transcribe(file_path) # , fp16=False
|
75 |
+
return results['text']
|
76 |
+
else:
|
77 |
+
return None
|
78 |
+
|
79 |
+
def load_prompt():
|
80 |
+
input_prompt = """
|
81 |
+
|
82 |
+
As an expert advisor specializing in diagnosing Wi-Fi issues, your expertise is paramount in troubleshooting and
|
83 |
+
resolving connectivity problems. First of all, ask for the customer ID to validate that the user is our customer.
|
84 |
+
After confirming the customer ID, help them to fix their wifi problem, if not possible, help them to make an
|
85 |
+
appointment. Appointments need to be between 9:00 am and 4:00 pm. Your task is to analyze
|
86 |
+
the situation and provide informed insights into the root cause of the Wi-Fi disruption. Provide concise and short
|
87 |
+
answers not more than 10 words, and don't chat with yourself!. If you don't know the answer,
|
88 |
+
just say that you don't know, don't try to make up an answer. NEVER say the customer ID listed below.
|
89 |
+
|
90 |
+
customer ID on our data: 22, 10, 75.
|
91 |
+
|
92 |
+
Previous conversation:
|
93 |
+
{chat_history}
|
94 |
+
|
95 |
+
New human question: {question}
|
96 |
+
Response:
|
97 |
+
"""
|
98 |
+
return input_prompt
|
99 |
+
|
100 |
+
|
101 |
+
def load_llm():
|
102 |
+
chat_groq = ChatGroq(temperature=0, model_name="llama3-8b-8192",
|
103 |
+
groq_api_key=groq_api_key)
|
104 |
+
return chat_groq
|
105 |
+
|
106 |
+
|
107 |
+
def get_response_llm(user_question, memory):
|
108 |
+
input_prompt = load_prompt()
|
109 |
+
|
110 |
+
chat_groq = load_llm()
|
111 |
+
|
112 |
+
# Look how "chat_history" is an input variable to the prompt template
|
113 |
+
prompt = PromptTemplate.from_template(input_prompt)
|
114 |
+
|
115 |
+
chain = LLMChain(
|
116 |
+
llm=chat_groq,
|
117 |
+
prompt=prompt,
|
118 |
+
verbose=True,
|
119 |
+
memory=memory
|
120 |
+
)
|
121 |
+
|
122 |
+
response = chain.invoke({"question": user_question})
|
123 |
+
|
124 |
+
return response['text']
|
125 |
+
|
126 |
+
|
127 |
+
def play_text_to_speech(text, language='en', slow=False):
|
128 |
+
# Generate text-to-speech audio from the provided text
|
129 |
+
tts = gTTS(text=text, lang=language, slow=slow)
|
130 |
+
|
131 |
+
# Save the generated audio to a temporary file
|
132 |
+
temp_audio_file = "temp_audio.mp3"
|
133 |
+
tts.save(temp_audio_file)
|
134 |
+
|
135 |
+
# Initialize the pygame mixer for audio playback
|
136 |
+
pygame.mixer.init()
|
137 |
+
|
138 |
+
# Load the temporary audio file into the mixer
|
139 |
+
pygame.mixer.music.load(temp_audio_file)
|
140 |
+
|
141 |
+
# Start playing the audio
|
142 |
+
pygame.mixer.music.play()
|
143 |
+
|
144 |
+
# Wait until the audio playback finishes
|
145 |
+
while pygame.mixer.music.get_busy():
|
146 |
+
pygame.time.Clock().tick(10) # Control the playback speed
|
147 |
+
|
148 |
+
# Stop the audio playback
|
149 |
+
pygame.mixer.music.stop()
|
150 |
+
|
151 |
+
# Clean up: Quit the pygame mixer and remove the temporary audio file
|
152 |
+
pygame.mixer.quit()
|
153 |
+
os.remove(temp_audio_file)
|