Spaces:
Build error
Build error
Create utils.py
Browse files
utils.py
ADDED
|
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from dotenv import load_dotenv
|
| 3 |
+
|
| 4 |
+
import wave
|
| 5 |
+
import pyaudio
|
| 6 |
+
from scipy.io import wavfile
|
| 7 |
+
import numpy as np
|
| 8 |
+
|
| 9 |
+
import whisper
|
| 10 |
+
|
| 11 |
+
from langchain.chains.llm import LLMChain
|
| 12 |
+
from langchain_core.prompts import PromptTemplate
|
| 13 |
+
from langchain_groq import ChatGroq
|
| 14 |
+
|
| 15 |
+
from gtts import gTTS
|
| 16 |
+
import pygame
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
load_dotenv()
|
| 20 |
+
|
| 21 |
+
groq_api_key = os.getenv("GROQ_API_KEY")
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def is_silence(data, max_amplitude_threshold=3000):
|
| 25 |
+
"""Check if audio data contains silence."""
|
| 26 |
+
# Find the maximum absolute amplitude in the audio data
|
| 27 |
+
max_amplitude = np.max(np.abs(data))
|
| 28 |
+
return max_amplitude <= max_amplitude_threshold
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def record_audio_chunk(audio, stream, chunk_length=5):
|
| 32 |
+
print("Recording...")
|
| 33 |
+
frames = []
|
| 34 |
+
# Calculate the number of chunks needed for the specified length of recording
|
| 35 |
+
# 16000 Hertz -> sufficient for capturing the human voice
|
| 36 |
+
# 1024 frames -> the higher, the higher the latency
|
| 37 |
+
num_chunks = int(16000 / 1024 * chunk_length)
|
| 38 |
+
|
| 39 |
+
# Record the audio data in chunks
|
| 40 |
+
for _ in range(num_chunks):
|
| 41 |
+
data = stream.read(1024)
|
| 42 |
+
frames.append(data)
|
| 43 |
+
|
| 44 |
+
temp_file_path = './temp_audio_chunk.wav'
|
| 45 |
+
print("Writing...")
|
| 46 |
+
with wave.open(temp_file_path, 'wb') as wf:
|
| 47 |
+
wf.setnchannels(1) # Mono channel
|
| 48 |
+
wf.setsampwidth(audio.get_sample_size(pyaudio.paInt16)) # Sample width
|
| 49 |
+
wf.setframerate(16000) # Sample rate
|
| 50 |
+
wf.writeframes(b''.join(frames)) # Write audio frames
|
| 51 |
+
|
| 52 |
+
# Check if the recorded chunk contains silence
|
| 53 |
+
try:
|
| 54 |
+
samplerate, data = wavfile.read(temp_file_path)
|
| 55 |
+
if is_silence(data):
|
| 56 |
+
os.remove(temp_file_path)
|
| 57 |
+
return True
|
| 58 |
+
else:
|
| 59 |
+
return False
|
| 60 |
+
except Exception as e:
|
| 61 |
+
print(f"Error while reading audio file: {e}")
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
def load_whisper():
|
| 65 |
+
model = whisper.load_model("base")
|
| 66 |
+
return model
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
def transcribe_audio(model, file_path):
|
| 70 |
+
print("Transcribing...")
|
| 71 |
+
# Print all files in the current directory
|
| 72 |
+
print("Current directory files:", os.listdir())
|
| 73 |
+
if os.path.isfile(file_path):
|
| 74 |
+
results = model.transcribe(file_path) # , fp16=False
|
| 75 |
+
return results['text']
|
| 76 |
+
else:
|
| 77 |
+
return None
|
| 78 |
+
|
| 79 |
+
def load_prompt():
|
| 80 |
+
input_prompt = """
|
| 81 |
+
|
| 82 |
+
As an expert advisor specializing in diagnosing Wi-Fi issues, your expertise is paramount in troubleshooting and
|
| 83 |
+
resolving connectivity problems. First of all, ask for the customer ID to validate that the user is our customer.
|
| 84 |
+
After confirming the customer ID, help them to fix their wifi problem, if not possible, help them to make an
|
| 85 |
+
appointment. Appointments need to be between 9:00 am and 4:00 pm. Your task is to analyze
|
| 86 |
+
the situation and provide informed insights into the root cause of the Wi-Fi disruption. Provide concise and short
|
| 87 |
+
answers not more than 10 words, and don't chat with yourself!. If you don't know the answer,
|
| 88 |
+
just say that you don't know, don't try to make up an answer. NEVER say the customer ID listed below.
|
| 89 |
+
|
| 90 |
+
customer ID on our data: 22, 10, 75.
|
| 91 |
+
|
| 92 |
+
Previous conversation:
|
| 93 |
+
{chat_history}
|
| 94 |
+
|
| 95 |
+
New human question: {question}
|
| 96 |
+
Response:
|
| 97 |
+
"""
|
| 98 |
+
return input_prompt
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
def load_llm():
|
| 102 |
+
chat_groq = ChatGroq(temperature=0, model_name="llama3-8b-8192",
|
| 103 |
+
groq_api_key=groq_api_key)
|
| 104 |
+
return chat_groq
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
def get_response_llm(user_question, memory):
|
| 108 |
+
input_prompt = load_prompt()
|
| 109 |
+
|
| 110 |
+
chat_groq = load_llm()
|
| 111 |
+
|
| 112 |
+
# Look how "chat_history" is an input variable to the prompt template
|
| 113 |
+
prompt = PromptTemplate.from_template(input_prompt)
|
| 114 |
+
|
| 115 |
+
chain = LLMChain(
|
| 116 |
+
llm=chat_groq,
|
| 117 |
+
prompt=prompt,
|
| 118 |
+
verbose=True,
|
| 119 |
+
memory=memory
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
response = chain.invoke({"question": user_question})
|
| 123 |
+
|
| 124 |
+
return response['text']
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
def play_text_to_speech(text, language='en', slow=False):
|
| 128 |
+
# Generate text-to-speech audio from the provided text
|
| 129 |
+
tts = gTTS(text=text, lang=language, slow=slow)
|
| 130 |
+
|
| 131 |
+
# Save the generated audio to a temporary file
|
| 132 |
+
temp_audio_file = "temp_audio.mp3"
|
| 133 |
+
tts.save(temp_audio_file)
|
| 134 |
+
|
| 135 |
+
# Initialize the pygame mixer for audio playback
|
| 136 |
+
pygame.mixer.init()
|
| 137 |
+
|
| 138 |
+
# Load the temporary audio file into the mixer
|
| 139 |
+
pygame.mixer.music.load(temp_audio_file)
|
| 140 |
+
|
| 141 |
+
# Start playing the audio
|
| 142 |
+
pygame.mixer.music.play()
|
| 143 |
+
|
| 144 |
+
# Wait until the audio playback finishes
|
| 145 |
+
while pygame.mixer.music.get_busy():
|
| 146 |
+
pygame.time.Clock().tick(10) # Control the playback speed
|
| 147 |
+
|
| 148 |
+
# Stop the audio playback
|
| 149 |
+
pygame.mixer.music.stop()
|
| 150 |
+
|
| 151 |
+
# Clean up: Quit the pygame mixer and remove the temporary audio file
|
| 152 |
+
pygame.mixer.quit()
|
| 153 |
+
os.remove(temp_audio_file)
|