Spaces:
Configuration error
Configuration error
File size: 8,319 Bytes
519d358 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""Main training script entry point"""
import logging
import os
from pathlib import Path
import sys
from dora import hydra_main
import hydra
from hydra.core.global_hydra import GlobalHydra
from omegaconf import OmegaConf
import torch
from torch import nn
import torchaudio
from torch.utils.data import ConcatDataset
from . import distrib
from .wav import get_wav_datasets, get_musdb_wav_datasets
from .demucs import Demucs
from .hdemucs import HDemucs
from .htdemucs import HTDemucs
from .repitch import RepitchedWrapper
from .solver import Solver
from .states import capture_init
from .utils import random_subset
logger = logging.getLogger(__name__)
class TorchHDemucsWrapper(nn.Module):
"""Wrapper around torchaudio HDemucs implementation to provide the proper metadata
for model evaluation.
See https://pytorch.org/audio/stable/tutorials/hybrid_demucs_tutorial.html"""
@capture_init
def __init__(self, **kwargs):
super().__init__()
try:
from torchaudio.models import HDemucs as TorchHDemucs
except ImportError:
raise ImportError("Please upgrade torchaudio for using its implementation of HDemucs")
self.samplerate = kwargs.pop('samplerate')
self.segment = kwargs.pop('segment')
self.sources = kwargs['sources']
self.torch_hdemucs = TorchHDemucs(**kwargs)
def forward(self, mix):
return self.torch_hdemucs.forward(mix)
def get_model(args):
extra = {
'sources': list(args.dset.sources),
'audio_channels': args.dset.channels,
'samplerate': args.dset.samplerate,
'segment': args.model_segment or 4 * args.dset.segment,
}
klass = {
'demucs': Demucs,
'hdemucs': HDemucs,
'htdemucs': HTDemucs,
'torch_hdemucs': TorchHDemucsWrapper,
}[args.model]
kw = OmegaConf.to_container(getattr(args, args.model), resolve=True)
model = klass(**extra, **kw)
return model
def get_optimizer(model, args):
seen_params = set()
other_params = []
groups = []
for n, module in model.named_modules():
if hasattr(module, "make_optim_group"):
group = module.make_optim_group()
params = set(group["params"])
assert params.isdisjoint(seen_params)
seen_params |= set(params)
groups.append(group)
for param in model.parameters():
if param not in seen_params:
other_params.append(param)
groups.insert(0, {"params": other_params})
parameters = groups
if args.optim.optim == "adam":
return torch.optim.Adam(
parameters,
lr=args.optim.lr,
betas=(args.optim.momentum, args.optim.beta2),
weight_decay=args.optim.weight_decay,
)
elif args.optim.optim == "adamw":
return torch.optim.AdamW(
parameters,
lr=args.optim.lr,
betas=(args.optim.momentum, args.optim.beta2),
weight_decay=args.optim.weight_decay,
)
else:
raise ValueError("Invalid optimizer %s", args.optim.optimizer)
def get_datasets(args):
if args.dset.backend:
torchaudio.set_audio_backend(args.dset.backend)
if args.dset.use_musdb:
train_set, valid_set = get_musdb_wav_datasets(args.dset)
else:
train_set, valid_set = [], []
if args.dset.wav:
extra_train_set, extra_valid_set = get_wav_datasets(args.dset)
if len(args.dset.sources) <= 4:
train_set = ConcatDataset([train_set, extra_train_set])
valid_set = ConcatDataset([valid_set, extra_valid_set])
else:
train_set = extra_train_set
valid_set = extra_valid_set
if args.dset.wav2:
extra_train_set, extra_valid_set = get_wav_datasets(args.dset, "wav2")
weight = args.dset.wav2_weight
if weight is not None:
b = len(train_set)
e = len(extra_train_set)
reps = max(1, round(e / b * (1 / weight - 1)))
else:
reps = 1
train_set = ConcatDataset([train_set] * reps + [extra_train_set])
if args.dset.wav2_valid:
if weight is not None:
b = len(valid_set)
n_kept = int(round(weight * b / (1 - weight)))
valid_set = ConcatDataset(
[valid_set, random_subset(extra_valid_set, n_kept)]
)
else:
valid_set = ConcatDataset([valid_set, extra_valid_set])
if args.dset.valid_samples is not None:
valid_set = random_subset(valid_set, args.dset.valid_samples)
assert len(train_set)
assert len(valid_set)
return train_set, valid_set
def get_solver(args, model_only=False):
distrib.init()
torch.manual_seed(args.seed)
model = get_model(args)
if args.misc.show:
logger.info(model)
mb = sum(p.numel() for p in model.parameters()) * 4 / 2**20
logger.info('Size: %.1f MB', mb)
if hasattr(model, 'valid_length'):
field = model.valid_length(1)
logger.info('Field: %.1f ms', field / args.dset.samplerate * 1000)
sys.exit(0)
# torch also initialize cuda seed if available
if torch.cuda.is_available():
model.cuda()
# optimizer
optimizer = get_optimizer(model, args)
assert args.batch_size % distrib.world_size == 0
args.batch_size //= distrib.world_size
if model_only:
return Solver(None, model, optimizer, args)
train_set, valid_set = get_datasets(args)
if args.augment.repitch.proba:
vocals = []
if 'vocals' in args.dset.sources:
vocals.append(args.dset.sources.index('vocals'))
else:
logger.warning('No vocal source found')
if args.augment.repitch.proba:
train_set = RepitchedWrapper(train_set, vocals=vocals, **args.augment.repitch)
logger.info("train/valid set size: %d %d", len(train_set), len(valid_set))
train_loader = distrib.loader(
train_set, batch_size=args.batch_size, shuffle=True,
num_workers=args.misc.num_workers, drop_last=True)
if args.dset.full_cv:
valid_loader = distrib.loader(
valid_set, batch_size=1, shuffle=False,
num_workers=args.misc.num_workers)
else:
valid_loader = distrib.loader(
valid_set, batch_size=args.batch_size, shuffle=False,
num_workers=args.misc.num_workers, drop_last=True)
loaders = {"train": train_loader, "valid": valid_loader}
# Construct Solver
return Solver(loaders, model, optimizer, args)
def get_solver_from_sig(sig, model_only=False):
inst = GlobalHydra.instance()
hyd = None
if inst.is_initialized():
hyd = inst.hydra
inst.clear()
xp = main.get_xp_from_sig(sig)
if hyd is not None:
inst.clear()
inst.initialize(hyd)
with xp.enter(stack=True):
return get_solver(xp.cfg, model_only)
@hydra_main(config_path="../conf", config_name="config", version_base="1.1")
def main(args):
global __file__
__file__ = hydra.utils.to_absolute_path(__file__)
for attr in ["musdb", "wav", "metadata"]:
val = getattr(args.dset, attr)
if val is not None:
setattr(args.dset, attr, hydra.utils.to_absolute_path(val))
os.environ["OMP_NUM_THREADS"] = "1"
os.environ["MKL_NUM_THREADS"] = "1"
if args.misc.verbose:
logger.setLevel(logging.DEBUG)
logger.info("For logs, checkpoints and samples check %s", os.getcwd())
logger.debug(args)
from dora import get_xp
logger.debug(get_xp().cfg)
solver = get_solver(args)
solver.train()
if '_DORA_TEST_PATH' in os.environ:
main.dora.dir = Path(os.environ['_DORA_TEST_PATH'])
if __name__ == "__main__":
main()
|