File size: 8,319 Bytes
519d358
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""Main training script entry point"""

import logging
import os
from pathlib import Path
import sys

from dora import hydra_main
import hydra
from hydra.core.global_hydra import GlobalHydra
from omegaconf import OmegaConf
import torch
from torch import nn
import torchaudio
from torch.utils.data import ConcatDataset

from . import distrib
from .wav import get_wav_datasets, get_musdb_wav_datasets
from .demucs import Demucs
from .hdemucs import HDemucs
from .htdemucs import HTDemucs
from .repitch import RepitchedWrapper
from .solver import Solver
from .states import capture_init
from .utils import random_subset

logger = logging.getLogger(__name__)


class TorchHDemucsWrapper(nn.Module):
    """Wrapper around torchaudio HDemucs implementation to provide the proper metadata

    for model evaluation.

    See https://pytorch.org/audio/stable/tutorials/hybrid_demucs_tutorial.html"""

    @capture_init
    def __init__(self,  **kwargs):
        super().__init__()
        try:
            from torchaudio.models import HDemucs as TorchHDemucs
        except ImportError:
            raise ImportError("Please upgrade torchaudio for using its implementation of HDemucs")
        self.samplerate = kwargs.pop('samplerate')
        self.segment = kwargs.pop('segment')
        self.sources = kwargs['sources']
        self.torch_hdemucs = TorchHDemucs(**kwargs)

    def forward(self, mix):
        return self.torch_hdemucs.forward(mix)


def get_model(args):
    extra = {
        'sources': list(args.dset.sources),
        'audio_channels': args.dset.channels,
        'samplerate': args.dset.samplerate,
        'segment': args.model_segment or 4 * args.dset.segment,
    }
    klass = {
        'demucs': Demucs,
        'hdemucs': HDemucs,
        'htdemucs': HTDemucs,
        'torch_hdemucs': TorchHDemucsWrapper,
    }[args.model]
    kw = OmegaConf.to_container(getattr(args, args.model), resolve=True)
    model = klass(**extra, **kw)
    return model


def get_optimizer(model, args):
    seen_params = set()
    other_params = []
    groups = []
    for n, module in model.named_modules():
        if hasattr(module, "make_optim_group"):
            group = module.make_optim_group()
            params = set(group["params"])
            assert params.isdisjoint(seen_params)
            seen_params |= set(params)
            groups.append(group)
    for param in model.parameters():
        if param not in seen_params:
            other_params.append(param)
    groups.insert(0, {"params": other_params})
    parameters = groups
    if args.optim.optim == "adam":
        return torch.optim.Adam(
            parameters,
            lr=args.optim.lr,
            betas=(args.optim.momentum, args.optim.beta2),
            weight_decay=args.optim.weight_decay,
        )
    elif args.optim.optim == "adamw":
        return torch.optim.AdamW(
            parameters,
            lr=args.optim.lr,
            betas=(args.optim.momentum, args.optim.beta2),
            weight_decay=args.optim.weight_decay,
        )
    else:
        raise ValueError("Invalid optimizer %s", args.optim.optimizer)


def get_datasets(args):
    if args.dset.backend:
        torchaudio.set_audio_backend(args.dset.backend)
    if args.dset.use_musdb:
        train_set, valid_set = get_musdb_wav_datasets(args.dset)
    else:
        train_set, valid_set = [], []
    if args.dset.wav:
        extra_train_set, extra_valid_set = get_wav_datasets(args.dset)
        if len(args.dset.sources) <= 4:
            train_set = ConcatDataset([train_set, extra_train_set])
            valid_set = ConcatDataset([valid_set, extra_valid_set])
        else:
            train_set = extra_train_set
            valid_set = extra_valid_set

    if args.dset.wav2:
        extra_train_set, extra_valid_set = get_wav_datasets(args.dset, "wav2")
        weight = args.dset.wav2_weight
        if weight is not None:
            b = len(train_set)
            e = len(extra_train_set)
            reps = max(1, round(e / b * (1 / weight - 1)))
        else:
            reps = 1
        train_set = ConcatDataset([train_set] * reps + [extra_train_set])
        if args.dset.wav2_valid:
            if weight is not None:
                b = len(valid_set)
                n_kept = int(round(weight * b / (1 - weight)))
                valid_set = ConcatDataset(
                    [valid_set, random_subset(extra_valid_set, n_kept)]
                )
            else:
                valid_set = ConcatDataset([valid_set, extra_valid_set])
    if args.dset.valid_samples is not None:
        valid_set = random_subset(valid_set, args.dset.valid_samples)
    assert len(train_set)
    assert len(valid_set)
    return train_set, valid_set


def get_solver(args, model_only=False):
    distrib.init()

    torch.manual_seed(args.seed)
    model = get_model(args)
    if args.misc.show:
        logger.info(model)
        mb = sum(p.numel() for p in model.parameters()) * 4 / 2**20
        logger.info('Size: %.1f MB', mb)
        if hasattr(model, 'valid_length'):
            field = model.valid_length(1)
            logger.info('Field: %.1f ms', field / args.dset.samplerate * 1000)
        sys.exit(0)

    # torch also initialize cuda seed if available
    if torch.cuda.is_available():
        model.cuda()

    # optimizer
    optimizer = get_optimizer(model, args)

    assert args.batch_size % distrib.world_size == 0
    args.batch_size //= distrib.world_size

    if model_only:
        return Solver(None, model, optimizer, args)

    train_set, valid_set = get_datasets(args)

    if args.augment.repitch.proba:
        vocals = []
        if 'vocals' in args.dset.sources:
            vocals.append(args.dset.sources.index('vocals'))
        else:
            logger.warning('No vocal source found')
        if args.augment.repitch.proba:
            train_set = RepitchedWrapper(train_set, vocals=vocals, **args.augment.repitch)

    logger.info("train/valid set size: %d %d", len(train_set), len(valid_set))
    train_loader = distrib.loader(
        train_set, batch_size=args.batch_size, shuffle=True,
        num_workers=args.misc.num_workers, drop_last=True)
    if args.dset.full_cv:
        valid_loader = distrib.loader(
            valid_set, batch_size=1, shuffle=False,
            num_workers=args.misc.num_workers)
    else:
        valid_loader = distrib.loader(
            valid_set, batch_size=args.batch_size, shuffle=False,
            num_workers=args.misc.num_workers, drop_last=True)
    loaders = {"train": train_loader, "valid": valid_loader}

    # Construct Solver
    return Solver(loaders, model, optimizer, args)


def get_solver_from_sig(sig, model_only=False):
    inst = GlobalHydra.instance()
    hyd = None
    if inst.is_initialized():
        hyd = inst.hydra
        inst.clear()
    xp = main.get_xp_from_sig(sig)
    if hyd is not None:
        inst.clear()
        inst.initialize(hyd)

    with xp.enter(stack=True):
        return get_solver(xp.cfg, model_only)


@hydra_main(config_path="../conf", config_name="config", version_base="1.1")
def main(args):
    global __file__
    __file__ = hydra.utils.to_absolute_path(__file__)
    for attr in ["musdb", "wav", "metadata"]:
        val = getattr(args.dset, attr)
        if val is not None:
            setattr(args.dset, attr, hydra.utils.to_absolute_path(val))

    os.environ["OMP_NUM_THREADS"] = "1"
    os.environ["MKL_NUM_THREADS"] = "1"

    if args.misc.verbose:
        logger.setLevel(logging.DEBUG)

    logger.info("For logs, checkpoints and samples check %s", os.getcwd())
    logger.debug(args)
    from dora import get_xp
    logger.debug(get_xp().cfg)

    solver = get_solver(args)
    solver.train()


if '_DORA_TEST_PATH' in os.environ:
    main.dora.dir = Path(os.environ['_DORA_TEST_PATH'])


if __name__ == "__main__":
    main()