File size: 4,571 Bytes
519d358
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

# Script to convert option names and model args from the dev branch to
# the cleanup release one. There should be no reaso to use that anymore.

import argparse
import io
import json
from pathlib import Path
import subprocess as sp

import torch

from demucs import train, pretrained, states

DEV_REPO = Path.home() / 'tmp/release_demucs_mdx'


TO_REMOVE = [
    'demucs.dconv_kw.gelu=True',
    'demucs.dconv_kw.nfreqs=0',
    'demucs.dconv_kw.nfreqs=0',
    'demucs.dconv_kw.version=4',
    'demucs.norm=gn',
    'wdemucs.nice=True',
    'wdemucs.good=True',
    'wdemucs.freq_emb=-0.2',
    'special=True',
    'special=False',
]

TO_REPLACE = [
    ('power', 'svd'),
    ('wdemucs', 'hdemucs'),
    ('hdemucs.hybrid=True', 'hdemucs.hybrid_old=True'),
    ('hdemucs.hybrid=2', 'hdemucs.hybrid=True'),
]

TO_INJECT = [
    ('model=hdemucs', ['hdemucs.cac=False']),
    ('model=hdemucs', ['hdemucs.norm_starts=999']),
]


def get_original_argv(sig):
    return json.load(open(Path(DEV_REPO) / f'outputs/xps/{sig}/.argv.json'))


def transform(argv, mappings, verbose=False):
    for rm in TO_REMOVE:
        while rm in argv:
            argv.remove(rm)

    for old, new in TO_REPLACE:
        argv[:] = [a.replace(old, new) for a in argv]

    for condition, args in TO_INJECT:
        if condition in argv:
            argv[:] = args + argv

    for idx, arg in enumerate(argv):
        if 'continue_from=' in arg:
            dep_sig = arg.split('=')[1]
            if dep_sig.startswith('"'):
                dep_sig = eval(dep_sig)
            if verbose:
                print("Need to recursively convert dependency XP", dep_sig)
            new_sig = convert(dep_sig, mappings, verbose).sig
            argv[idx] = f'continue_from="{new_sig}"'


def convert(sig, mappings, verbose=False):
    argv = get_original_argv(sig)
    if verbose:
        print("Original argv", argv)
    transform(argv, mappings, verbose)
    if verbose:
        print("New argv", argv)
    xp = train.main.get_xp(argv)
    train.main.init_xp(xp)
    if verbose:
        print("Mapping", sig, "->", xp.sig)
    mappings[sig] = xp.sig
    return xp


def _eval_old(old_sig, x):
    script = (
        'from demucs import pretrained; import torch; import sys; import io; '
        'buf = io.BytesIO(sys.stdin.buffer.read()); '
        'x = torch.load(buf); m = pretrained.load_pretrained_model('
        f'"{old_sig}"); torch.save(m(x), sys.stdout.buffer)')

    buf = io.BytesIO()
    torch.save(x, buf)
    proc = sp.run(
        ['python3', '-c', script], input=buf.getvalue(), capture_output=True, cwd=DEV_REPO)
    if proc.returncode != 0:
        print("Error", proc.stderr.decode())
        assert False

    buf = io.BytesIO(proc.stdout)
    return torch.load(buf)


def compare(old_sig, model):
    test = torch.randn(1, 2, 44100 * 10)
    old_out = _eval_old(old_sig, test)
    out = model(test)

    delta = 20 * torch.log10((out - old_out).norm() / out.norm()).item()
    return delta


def main():
    torch.manual_seed(1234)
    parser = argparse.ArgumentParser('convert')
    parser.add_argument('sigs', nargs='*')
    parser.add_argument('-o', '--output', type=Path, default=Path('release_models'))
    parser.add_argument('-d', '--dump', action='store_true')
    parser.add_argument('-c', '--compare', action='store_true')
    parser.add_argument('-v', '--verbose', action='store_true')
    args = parser.parse_args()

    args.output.mkdir(exist_ok=True, parents=True)
    mappings = {}
    for sig in args.sigs:
        xp = convert(sig, mappings, args.verbose)
        if args.dump or args.compare:
            old_pkg = pretrained._load_package(sig, old=True)
            model = train.get_model(xp.cfg)
            model.load_state_dict(old_pkg['state'])
            if args.dump:
                pkg = states.serialize_model(model, xp.cfg)
                states.save_with_checksum(pkg, args.output / f'{xp.sig}.th')
            if args.compare:
                delta = compare(sig, model)
                print("Delta for", sig, xp.sig, delta)

        mappings[sig] = xp.sig

    print("FINAL MAPPINGS")
    for old, new in mappings.items():
        print(old, " ", new)


if __name__ == '__main__':
    main()