Spaces:
Configuration error
Configuration error
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
# Inspired from https://github.com/rwightman/pytorch-image-models | |
from contextlib import contextmanager | |
import torch | |
from .states import swap_state | |
class ModelEMA: | |
""" | |
Perform EMA on a model. You can switch to the EMA weights temporarily | |
with the `swap` method. | |
ema = ModelEMA(model) | |
with ema.swap(): | |
# compute valid metrics with averaged model. | |
""" | |
def __init__(self, model, decay=0.9999, unbias=True, device='cpu'): | |
self.decay = decay | |
self.model = model | |
self.state = {} | |
self.count = 0 | |
self.device = device | |
self.unbias = unbias | |
self._init() | |
def _init(self): | |
for key, val in self.model.state_dict().items(): | |
if val.dtype != torch.float32: | |
continue | |
device = self.device or val.device | |
if key not in self.state: | |
self.state[key] = val.detach().to(device, copy=True) | |
def update(self): | |
if self.unbias: | |
self.count = self.count * self.decay + 1 | |
w = 1 / self.count | |
else: | |
w = 1 - self.decay | |
for key, val in self.model.state_dict().items(): | |
if val.dtype != torch.float32: | |
continue | |
device = self.device or val.device | |
self.state[key].mul_(1 - w) | |
self.state[key].add_(val.detach().to(device), alpha=w) | |
def swap(self): | |
with swap_state(self.model, self.state): | |
yield | |
def state_dict(self): | |
return {'state': self.state, 'count': self.count} | |
def load_state_dict(self, state): | |
self.count = state['count'] | |
for k, v in state['state'].items(): | |
self.state[k].copy_(v) | |