Spaces:
Configuration error
Configuration error
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
from ._explorers import MyExplorer | |
from dora import Launcher | |
def explorer(launcher: Launcher): | |
launcher.slurm_(gpus=8, time=3 * 24 * 60, partition="devlab,learnlab,learnfair") # 3 days | |
sub = launcher.bind_( | |
{ | |
"dset": "extra_mmi_goodclean", | |
"test.shifts": 0, | |
"model": "htdemucs", | |
"htdemucs.dconv_mode": 3, | |
"htdemucs.depth": 4, | |
"htdemucs.t_dropout": 0.02, | |
"htdemucs.t_layers": 5, | |
"max_batches": 800, | |
"ema.epoch": [0.9, 0.95], | |
"ema.batch": [0.9995, 0.9999], | |
"dset.segment": 10, | |
"batch_size": 32, | |
} | |
) | |
sub({"model": "hdemucs"}) | |
sub({"model": "hdemucs", "dset": "extra44"}) | |
sub({"model": "hdemucs", "dset": "musdb44"}) | |
sparse = { | |
'batch_size': 3 * 8, | |
'augment.remix.group_size': 3, | |
'htdemucs.t_auto_sparsity': True, | |
'htdemucs.t_sparse_self_attn': True, | |
'htdemucs.t_sparse_cross_attn': True, | |
'htdemucs.t_sparsity': 0.9, | |
"htdemucs.t_layers": 7 | |
} | |
with launcher.job_array(): | |
for transf_layers in [5, 7]: | |
for bottom_channels in [0, 512]: | |
sub = launcher.bind({ | |
"htdemucs.t_layers": transf_layers, | |
"htdemucs.bottom_channels": bottom_channels, | |
}) | |
if bottom_channels == 0 and transf_layers == 5: | |
sub({"augment.remix.proba": 0.0}) | |
sub({ | |
"augment.repitch.proba": 0.0, | |
# when doing repitching, we trim the outut to align on the | |
# highest change of BPM. When removing repitching, | |
# we simulate it here to ensure the training context is the same. | |
# Another second is lost for all experiments due to the random | |
# shift augmentation. | |
"dset.segment": 10 * 0.88}) | |
elif bottom_channels == 512 and transf_layers == 5: | |
sub(dset="musdb44") | |
sub(dset="extra44") | |
# Sparse kernel XP, currently not released as kernels are still experimental. | |
sub(sparse, {'dset.segment': 15, "htdemucs.t_layers": 7}) | |
for duration in [5, 10, 15]: | |
sub({"dset.segment": duration}) | |