audio / demucs /grids /mmi.py
PreciousMposa's picture
Upload 107 files
519d358 verified
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from ._explorers import MyExplorer
from dora import Launcher
@MyExplorer
def explorer(launcher: Launcher):
launcher.slurm_(gpus=8, time=3 * 24 * 60, partition="devlab,learnlab,learnfair") # 3 days
sub = launcher.bind_(
{
"dset": "extra_mmi_goodclean",
"test.shifts": 0,
"model": "htdemucs",
"htdemucs.dconv_mode": 3,
"htdemucs.depth": 4,
"htdemucs.t_dropout": 0.02,
"htdemucs.t_layers": 5,
"max_batches": 800,
"ema.epoch": [0.9, 0.95],
"ema.batch": [0.9995, 0.9999],
"dset.segment": 10,
"batch_size": 32,
}
)
sub({"model": "hdemucs"})
sub({"model": "hdemucs", "dset": "extra44"})
sub({"model": "hdemucs", "dset": "musdb44"})
sparse = {
'batch_size': 3 * 8,
'augment.remix.group_size': 3,
'htdemucs.t_auto_sparsity': True,
'htdemucs.t_sparse_self_attn': True,
'htdemucs.t_sparse_cross_attn': True,
'htdemucs.t_sparsity': 0.9,
"htdemucs.t_layers": 7
}
with launcher.job_array():
for transf_layers in [5, 7]:
for bottom_channels in [0, 512]:
sub = launcher.bind({
"htdemucs.t_layers": transf_layers,
"htdemucs.bottom_channels": bottom_channels,
})
if bottom_channels == 0 and transf_layers == 5:
sub({"augment.remix.proba": 0.0})
sub({
"augment.repitch.proba": 0.0,
# when doing repitching, we trim the outut to align on the
# highest change of BPM. When removing repitching,
# we simulate it here to ensure the training context is the same.
# Another second is lost for all experiments due to the random
# shift augmentation.
"dset.segment": 10 * 0.88})
elif bottom_channels == 512 and transf_layers == 5:
sub(dset="musdb44")
sub(dset="extra44")
# Sparse kernel XP, currently not released as kernels are still experimental.
sub(sparse, {'dset.segment': 15, "htdemucs.t_layers": 7})
for duration in [5, 10, 15]:
sub({"dset.segment": duration})