File size: 5,072 Bytes
901dde3
c683b90
99acab0
c683b90
ab952d9
 
c683b90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
901dde3
 
a8274b9
 
ab952d9
 
 
 
 
 
99acab0
ab952d9
 
 
a8274b9
 
901dde3
 
a8274b9
c683b90
 
 
 
a8274b9
 
 
 
 
 
 
c683b90
a8274b9
 
 
d79bac4
 
a8274b9
 
ab952d9
a8274b9
 
 
 
 
 
d79bac4
c683b90
 
 
 
 
 
 
d79bac4
c683b90
 
ab952d9
 
c683b90
 
d79bac4
c683b90
 
 
 
 
d79bac4
c683b90
d79bac4
c683b90
 
 
 
 
 
 
d79bac4
a8274b9
 
 
 
 
c683b90
a8274b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import gradio as gr
import numpy as np
import cv2
from norfair import Detection, Tracker, Video
from detector.utils import detect_plates, detect_chars, imcrop, send_request, draw_text
from threading import Thread

DISTANCE_THRESHOLD_BBOX: float = 0.7
DISTANCE_THRESHOLD_CENTROID: int = 30
MAX_DISTANCE: int = 10000


def yolo_to_norfair(yolo_detections):
    norfair_detections = []
    detections_as_xyxy = yolo_detections.xyxy[0]
    for detection_as_xyxy in detections_as_xyxy:
        bbox = np.array(
            [
                [detection_as_xyxy[0].item(), detection_as_xyxy[1].item()],
                [detection_as_xyxy[2].item(), detection_as_xyxy[3].item()],
            ]
        )
        scores = np.array(
            [detection_as_xyxy[4].item(), detection_as_xyxy[4].item()]
        )
        norfair_detections.append(
            Detection(
                points=bbox, scores=scores, label=int(detection_as_xyxy[-1].item())
            )
        )
    return norfair_detections


def fn_image(foto):
    plates_text = []
    plates = detect_plates(foto)
    records = plates.pandas().xyxy[0].to_dict(orient='records')
    if records:
        for plate in records:
            xi, yi, xf, yf = int(plate['xmin']), int(plate['ymin']), int(plate['xmax']), int(plate['ymax'])
            crop = imcrop(foto, (xi, yi, xf, yf))
            if len(crop) > 0:
                cv2.rectangle(foto, (xi, yi), (xf, yf), (0, 255, 0), 2)
                text = detect_chars(crop)
                draw_text(foto, text, (xi, yi))
                plates_text.append(text)
    return foto, plates_text


def fn_video(video, initial_time, duration):
    tracker = Tracker(
        distance_function="iou_opt",
        distance_threshold=DISTANCE_THRESHOLD_BBOX,
    )
    cap = cv2.VideoCapture(video)
    fps = cap.get(cv2.CAP_PROP_FPS)
    image_size = (int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)))
    final_video = cv2.VideoWriter('output.mp4', cv2.VideoWriter_fourcc(*'VP90'), fps, image_size)
    num_frames = 0
    min_frame = int(initial_time * fps)
    max_frame = int((initial_time + duration) * fps)
    plates = {}
    while cap.isOpened():
        try:
            ret, frame = cap.read()
            gpu_frame = cv2.cuda_GpuMat()
            gpu_frame.upload(frame)
            if not ret:
                break
            frame_copy = frame.copy()
        except Exception as e:
            print(e)
            continue
        if num_frames < min_frame:
            num_frames += 1
            continue
        yolo_detections = detect_plates(gpu_frame)
        detections = yolo_to_norfair(yolo_detections)
        tracked_objects = tracker.update(detections=detections)
        for obj in tracked_objects:
            if obj.last_detection is not None:
                bbox = obj.last_detection.points
                bbox = int(bbox[0][0]), int(bbox[0][1]), int(bbox[1][0]), int(bbox[1][1])
                if obj.id not in plates.keys():
                    crop = imcrop(gpu_frame, bbox)
                    text = detect_chars(crop)
                    plates[obj.id] = text
                    thread = Thread(target=send_request, args=(frame_copy, text, bbox))
                    thread.start()

                cv2.rectangle(
                    gpu_frame,
                    (bbox[0], bbox[1]),
                    (bbox[2], bbox[3]),
                    (0, 255, 0),
                    2,
                )
                draw_text(gpu_frame, plates[obj.id], (bbox[0], bbox[1]))
                cv2.putText(
                    gpu_frame,
                    plates[obj.id],
                    (bbox[0], bbox[1]),
                    cv2.FONT_HERSHEY_SIMPLEX,
                    1,
                    (0, 255, 0),
                    2,
                )
        final_video.write(gpu_frame)
        num_frames += 1
        if num_frames == max_frame:
            break
    cap.release()
    final_video.release()
    return 'output.mp4', [plates[k] for k in plates.keys()]


image_interface = gr.Interface(
    fn=fn_image,
    inputs="image",
    outputs=["image", "text"],
    title="Buscar números de placa en una imagen",
    allow_flagging=False,
    allow_screenshot=False,
)

video_interface = gr.Interface(
    fn=fn_video,
    inputs=[
        gr.Video(type="file", label="Video"),
        gr.Slider(0, 600, value=0, label="Tiempo inicial en segundos", step=1),
        gr.Slider(0, 10, value=4, label="Duración en segundos", step=1),
    ],
    outputs=["video", "text"],
    title="Buscar números de placa en un video",
    allow_flagging=False,
    allow_screenshot=False,
)

webcam_interface = gr.Interface(
    fn_image,
    inputs=[
        gr.Image(source='webcam', streaming=True),
    ],
    outputs=gr.Image(type="file"),
    live=True,
    title="Buscar placa con la cámara",
    allow_flagging=False,
    allow_screenshot=False,
)

if __name__ == "__main__":
    gr.TabbedInterface(
        [image_interface, video_interface],
        ["Fotos", "Videos"],
    ).launch()