import torch import numpy as np import cv2 import os from datetime import datetime from json import dumps import requests BASE_DIR = os.path.abspath(os.getcwd()) device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') print('Loading models...', device) model_plates = torch.hub.load('ultralytics/yolov5', 'custom', path=os.path.join(BASE_DIR, 'detector', 'static', 'plates.pt'), device=device) model_chars = torch.hub.load('ultralytics/yolov5', 'custom', path=os.path.join(BASE_DIR, 'detector', 'static', 'chars.pt'), device=device) def pad_img_to_fit_bbox(img, x1, x2, y1, y2): img = np.pad(img, ((np.abs(np.minimum(0, y1)), np.maximum(y2 - img.shape[0], 0)), (np.abs(np.minimum(0, x1)), np.maximum(x2 - img.shape[1], 0)), (0, 0)), mode="constant") y1 += np.abs(np.minimum(0, y1)) y2 += np.abs(np.minimum(0, y1)) x1 += np.abs(np.minimum(0, x1)) x2 += np.abs(np.minimum(0, x1)) return img, x1, x2, y1, y2 def imcrop(img, bbox): x1, y1, x2, y2 = bbox if x1 < 0 or y1 < 0 or x2 > img.shape[1] or y2 > img.shape[0]: img, x1, x2, y1, y2 = pad_img_to_fit_bbox(img, x1, x2, y1, y2) return img[y1:y2, x1:x2, :] def detect_plates(img): return model_plates(img) def detect_chars(img): img = cv2.resize(img, (640, 320)) detect = model_chars(img) records = detect.pandas().xyxy[0].to_dict(orient='records') records = filter(lambda d: d['confidence'] > 0.7, records) text = '' if records: records = sorted(records, key=lambda d: d['xmin']) text = ''.join([i.get('name') for i in records]) return text def draw_text(img, text, pos=(0, 0), font_scale=1, font_thickness=2, text_color=(0, 255, 0), text_color_bg=(0, 0, 0) ): x, y = pos text_size, _ = cv2.getTextSize(text, 0, font_scale, font_thickness) text_w, text_h = text_size cv2.rectangle(img, pos, (x + text_w, y - text_h), text_color_bg, -1) cv2.putText(img, text, (x, y), 0, font_scale, text_color, font_thickness) def send_request(frame, text, bbox): cv2.rectangle( frame, (bbox[0], bbox[1]), (bbox[2], bbox[3]), (0, 255, 0), 2, ) draw_text(frame, text, (bbox[0], bbox[1])) url = "https://api.prevantec.com/toll-plates" data = { "number": text, "camera": "camera_1", "spot_on": str(datetime.now()), } if not os.path.exists(os.path.join(BASE_DIR, 'plates')): os.makedirs(os.path.join(BASE_DIR, 'plates')) filename = os.path.join(BASE_DIR, 'plates', f'{text}.jpg') cv2.imwrite(filename, frame) payload = {'data': dumps(data)} files = [ ('files', (f'{text}.jpg', open(filename, 'rb'), 'image/jpg')) ] headers = {} requests.request("POST", url, headers=headers, data=payload, files=files)