File size: 2,551 Bytes
111e299
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
# Importing Libraries
import os
import numpy as np
import cv2
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPooling2D, Input
from keras.optimizers import Adam
from keras_preprocessing.image import ImageDataGenerator
from keras.callbacks import EarlyStopping, ModelCheckpoint

# Define paths using os.path for portability
base_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), '../'))
train_dir = os.path.join(base_dir, 'Data/train')
val_dir = os.path.join(base_dir, 'Data/test')

# Data augmentation and rescaling
train_datagen = ImageDataGenerator(
    rescale=1./255,
    rotation_range=30,
    zoom_range=0.2,
    horizontal_flip=True,
    shear_range=0.2,
    width_shift_range=0.2,
    height_shift_range=0.2
)
val_datagen = ImageDataGenerator(rescale=1./255)

train_generator = train_datagen.flow_from_directory(
    train_dir, target_size=(48, 48), batch_size=64, color_mode='grayscale', class_mode='categorical')

validation_generator = val_datagen.flow_from_directory(
    val_dir, target_size=(48, 48), batch_size=64, color_mode='grayscale', class_mode='categorical')

# Building the Convolutional Network Architecture
emotion_model = Sequential()
emotion_model.add(Input(shape=(48, 48, 1)))
emotion_model.add(Conv2D(32, kernel_size=(3, 3), activation='relu'))
emotion_model.add(Conv2D(64, kernel_size=(3, 3), activation='relu'))
emotion_model.add(MaxPooling2D(pool_size=(2, 2)))
emotion_model.add(Dropout(0.25))

emotion_model.add(Conv2D(128, kernel_size=(3, 3), activation='relu'))
emotion_model.add(MaxPooling2D(pool_size=(2, 2)))
emotion_model.add(Conv2D(128, kernel_size=(3, 3), activation='relu'))
emotion_model.add(MaxPooling2D(pool_size=(2, 2)))
emotion_model.add(Dropout(0.25))

emotion_model.add(Flatten())
emotion_model.add(Dense(1024, activation='relu'))
emotion_model.add(Dropout(0.5))
emotion_model.add(Dense(7, activation='softmax'))

# Compile the model
emotion_model.compile(loss='categorical_crossentropy', optimizer=Adam(learning_rate=0.0001), metrics=['accuracy'])

# Define callbacks
callbacks = [
    EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True),
    ModelCheckpoint('best_model.h5', monitor='val_loss', save_best_only=True)
]

# Train the model
emotion_model_info = emotion_model.fit(
    train_generator,
    epochs=50,
    validation_data=validation_generator,
    callbacks=callbacks
)

# Save the full model
emotion_model.save("emotion_model.keras")