|
from fastapi import FastAPI, HTTPException
|
|
from fastapi.middleware.cors import CORSMiddleware
|
|
from fastapi.responses import JSONResponse
|
|
from pydantic import BaseModel
|
|
import base64
|
|
from io import BytesIO
|
|
from PIL import Image
|
|
import numpy as np
|
|
import cv2
|
|
import os
|
|
import traceback
|
|
from keras.models import load_model
|
|
|
|
|
|
model_path = os.path.join(os.path.dirname(__file__), 'emotion_model.keras')
|
|
model = load_model(model_path)
|
|
|
|
|
|
emotion_dict = {
|
|
0: "Angry", 1: "Disgusted", 2: "Fearful", 3: "Happy",
|
|
4: "Neutral", 5: "Sad", 6: "Surprised"
|
|
}
|
|
|
|
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
|
|
emoji_map = {
|
|
0: os.path.join(BASE_DIR, "emojis", "angry.png"),
|
|
1: os.path.join(BASE_DIR, "emojis", "disgusted.png"),
|
|
2: os.path.join(BASE_DIR, "emojis", "fearful.png"),
|
|
3: os.path.join(BASE_DIR, "emojis", "happy.png"),
|
|
4: os.path.join(BASE_DIR, "emojis", "neutral.png"),
|
|
5: os.path.join(BASE_DIR, "emojis", "sad.png"),
|
|
6: os.path.join(BASE_DIR, "emojis", "surprised.png")
|
|
}
|
|
|
|
|
|
app = FastAPI()
|
|
app.add_middleware(
|
|
CORSMiddleware,
|
|
allow_origins=["*"],
|
|
allow_credentials=True,
|
|
allow_methods=["*"],
|
|
allow_headers=["*"],
|
|
)
|
|
|
|
class ImageData(BaseModel):
|
|
image: str
|
|
|
|
|
|
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
|
|
|
|
@app.post("/process-image")
|
|
async def process_image(data: ImageData):
|
|
try:
|
|
header, encoded = data.image.split(",")
|
|
img_bytes = base64.b64decode(encoded)
|
|
img = Image.open(BytesIO(img_bytes)).convert('RGB')
|
|
img_np = np.array(img)
|
|
|
|
gray = cv2.cvtColor(img_np, cv2.COLOR_RGB2GRAY)
|
|
faces = face_cascade.detectMultiScale(gray, scaleFactor=1.3, minNeighbors=5)
|
|
|
|
if len(faces) == 0:
|
|
raise HTTPException(status_code=400, detail="No face detected")
|
|
|
|
for (x, y, w, h) in faces:
|
|
roi_gray = gray[y:y + h, x:x + w]
|
|
roi = cv2.resize(roi_gray, (48, 48))
|
|
roi = roi.astype("float") / 255.0
|
|
roi = np.expand_dims(roi, axis=-1)
|
|
roi = np.expand_dims(roi, axis=0)
|
|
|
|
preds = model.predict(roi, verbose=0)
|
|
emotion_index = int(np.argmax(preds))
|
|
emotion_label = emotion_dict[emotion_index]
|
|
|
|
emoji_path = emoji_map[emotion_index]
|
|
emoji_img = Image.open(emoji_path).convert("RGBA")
|
|
buffer = BytesIO()
|
|
emoji_img.save(buffer, format="PNG")
|
|
encoded_emoji = base64.b64encode(buffer.getvalue()).decode("utf-8")
|
|
|
|
return JSONResponse({
|
|
"emotion": emotion_label,
|
|
"emoji": f"data:image/png;base64,{encoded_emoji}"
|
|
})
|
|
|
|
raise HTTPException(status_code=400, detail="Face not processed")
|
|
|
|
except Exception as e:
|
|
print("Error:", str(e))
|
|
traceback.print_exc()
|
|
raise HTTPException(status_code=500, detail=str(e))
|
|
|