Update Backend/app.py
Browse files- Backend/app.py +96 -92
Backend/app.py
CHANGED
@@ -1,92 +1,96 @@
|
|
1 |
-
from fastapi import FastAPI, HTTPException
|
2 |
-
from fastapi.middleware.cors import CORSMiddleware
|
3 |
-
from fastapi.responses import JSONResponse
|
4 |
-
from pydantic import BaseModel
|
5 |
-
import base64
|
6 |
-
from io import BytesIO
|
7 |
-
from PIL import Image
|
8 |
-
import numpy as np
|
9 |
-
import cv2
|
10 |
-
import os
|
11 |
-
import traceback
|
12 |
-
from keras.models import load_model
|
13 |
-
|
14 |
-
# Load the trained model
|
15 |
-
model_path = os.path.join(os.path.dirname(__file__), 'emotion_model.keras')
|
16 |
-
model = load_model(model_path)
|
17 |
-
|
18 |
-
# Emotion and emoji maps
|
19 |
-
emotion_dict = {
|
20 |
-
0: "Angry", 1: "Disgusted", 2: "Fearful", 3: "Happy",
|
21 |
-
4: "Neutral", 5: "Sad", 6: "Surprised"
|
22 |
-
}
|
23 |
-
|
24 |
-
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
|
25 |
-
emoji_map = {
|
26 |
-
0: os.path.join(BASE_DIR, "emojis", "angry.png"),
|
27 |
-
1: os.path.join(BASE_DIR, "emojis", "disgusted.png"),
|
28 |
-
2: os.path.join(BASE_DIR, "emojis", "fearful.png"),
|
29 |
-
3: os.path.join(BASE_DIR, "emojis", "happy.png"),
|
30 |
-
4: os.path.join(BASE_DIR, "emojis", "neutral.png"),
|
31 |
-
5: os.path.join(BASE_DIR, "emojis", "sad.png"),
|
32 |
-
6: os.path.join(BASE_DIR, "emojis", "surprised.png")
|
33 |
-
}
|
34 |
-
|
35 |
-
# Initialize FastAPI app
|
36 |
-
app = FastAPI()
|
37 |
-
app.add_middleware(
|
38 |
-
CORSMiddleware,
|
39 |
-
allow_origins=["*"],
|
40 |
-
allow_credentials=True,
|
41 |
-
allow_methods=["*"],
|
42 |
-
allow_headers=["*"],
|
43 |
-
)
|
44 |
-
|
45 |
-
class ImageData(BaseModel):
|
46 |
-
image: str
|
47 |
-
|
48 |
-
# Load Haarcascade once
|
49 |
-
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
|
50 |
-
|
51 |
-
@app.
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException
|
2 |
+
from fastapi.middleware.cors import CORSMiddleware
|
3 |
+
from fastapi.responses import JSONResponse
|
4 |
+
from pydantic import BaseModel
|
5 |
+
import base64
|
6 |
+
from io import BytesIO
|
7 |
+
from PIL import Image
|
8 |
+
import numpy as np
|
9 |
+
import cv2
|
10 |
+
import os
|
11 |
+
import traceback
|
12 |
+
from keras.models import load_model
|
13 |
+
|
14 |
+
# Load the trained model
|
15 |
+
model_path = os.path.join(os.path.dirname(__file__), 'emotion_model.keras')
|
16 |
+
model = load_model(model_path)
|
17 |
+
|
18 |
+
# Emotion and emoji maps
|
19 |
+
emotion_dict = {
|
20 |
+
0: "Angry", 1: "Disgusted", 2: "Fearful", 3: "Happy",
|
21 |
+
4: "Neutral", 5: "Sad", 6: "Surprised"
|
22 |
+
}
|
23 |
+
|
24 |
+
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
|
25 |
+
emoji_map = {
|
26 |
+
0: os.path.join(BASE_DIR, "emojis", "angry.png"),
|
27 |
+
1: os.path.join(BASE_DIR, "emojis", "disgusted.png"),
|
28 |
+
2: os.path.join(BASE_DIR, "emojis", "fearful.png"),
|
29 |
+
3: os.path.join(BASE_DIR, "emojis", "happy.png"),
|
30 |
+
4: os.path.join(BASE_DIR, "emojis", "neutral.png"),
|
31 |
+
5: os.path.join(BASE_DIR, "emojis", "sad.png"),
|
32 |
+
6: os.path.join(BASE_DIR, "emojis", "surprised.png")
|
33 |
+
}
|
34 |
+
|
35 |
+
# Initialize FastAPI app
|
36 |
+
app = FastAPI()
|
37 |
+
app.add_middleware(
|
38 |
+
CORSMiddleware,
|
39 |
+
allow_origins=["*"],
|
40 |
+
allow_credentials=True,
|
41 |
+
allow_methods=["*"],
|
42 |
+
allow_headers=["*"],
|
43 |
+
)
|
44 |
+
|
45 |
+
class ImageData(BaseModel):
|
46 |
+
image: str
|
47 |
+
|
48 |
+
# Load Haarcascade once
|
49 |
+
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
|
50 |
+
|
51 |
+
@app.get("/")
|
52 |
+
def read_root():
|
53 |
+
return {"message": "FaceFeel backend is running"}
|
54 |
+
|
55 |
+
@app.post("/process-image")
|
56 |
+
async def process_image(data: ImageData):
|
57 |
+
try:
|
58 |
+
header, encoded = data.image.split(",")
|
59 |
+
img_bytes = base64.b64decode(encoded)
|
60 |
+
img = Image.open(BytesIO(img_bytes)).convert('RGB')
|
61 |
+
img_np = np.array(img)
|
62 |
+
|
63 |
+
gray = cv2.cvtColor(img_np, cv2.COLOR_RGB2GRAY)
|
64 |
+
faces = face_cascade.detectMultiScale(gray, scaleFactor=1.3, minNeighbors=5)
|
65 |
+
|
66 |
+
if len(faces) == 0:
|
67 |
+
raise HTTPException(status_code=400, detail="No face detected")
|
68 |
+
|
69 |
+
for (x, y, w, h) in faces:
|
70 |
+
roi_gray = gray[y:y + h, x:x + w]
|
71 |
+
roi = cv2.resize(roi_gray, (48, 48))
|
72 |
+
roi = roi.astype("float") / 255.0
|
73 |
+
roi = np.expand_dims(roi, axis=-1)
|
74 |
+
roi = np.expand_dims(roi, axis=0)
|
75 |
+
|
76 |
+
preds = model.predict(roi, verbose=0)
|
77 |
+
emotion_index = int(np.argmax(preds))
|
78 |
+
emotion_label = emotion_dict[emotion_index]
|
79 |
+
|
80 |
+
emoji_path = emoji_map[emotion_index]
|
81 |
+
emoji_img = Image.open(emoji_path).convert("RGBA")
|
82 |
+
buffer = BytesIO()
|
83 |
+
emoji_img.save(buffer, format="PNG")
|
84 |
+
encoded_emoji = base64.b64encode(buffer.getvalue()).decode("utf-8")
|
85 |
+
|
86 |
+
return JSONResponse({
|
87 |
+
"emotion": emotion_label,
|
88 |
+
"emoji": f"data:image/png;base64,{encoded_emoji}"
|
89 |
+
})
|
90 |
+
|
91 |
+
raise HTTPException(status_code=400, detail="Face not processed")
|
92 |
+
|
93 |
+
except Exception as e:
|
94 |
+
print("Error:", str(e))
|
95 |
+
traceback.print_exc()
|
96 |
+
raise HTTPException(status_code=500, detail=str(e))
|